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Abstract—In the network security life cycle, security needs
are initialized by network operators and typically documented
in natural languages, and later implemented and deployed
in developed/acquired security appliances, typically written in
a programming language by third-party developers. However,
oftentimes, those security appliances/programs may not quite
match the urgent and fast-evolving security needs since the whole
developing/deployment procedure is very time-consuming.

In this paper, we propose a novel framework, AUTOSEC,
to aid network operators in building up or rapid prototyping
operational network security services directly from high-level
service needs as automatically as possible. AUTOSEC helps bridge
the huge gap from human intents in natural language descriptions
to the deliverable network security services. More specifically,
AUTOSEC utilizes Natural Language Processing (NLP) techniques
to infer security intents from natural language descriptions, and
then performs Interactive Synthesis to assist users to validate
and refine parsed intents if necessary. AUTOSEC further lever-
ages Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) techniques to automatically compose and
instantiate security services in terms of refined security intents.
In the evaluation, we demonstrate the early success of AUTOSEC

with security policy descriptions collected from various data
sources including research papers, appliance descriptions, real-
world security standards, and human-written policies.

I. INTRODUCTION

As a common practice in the typical network security life

cycle, network security operators always start with understand-

ing threats and defining required security needs in specifica-

tions or policies (typically written in natural languages), before

they design, implement, or acquire network security service

programs/appliances (typically written in a programming lan-

guage and often by third-party developers) [1]. However, often

times, the procedure is time-consuming and can hardly meet

the urgent and fast-evolving security needs, since tedious low-

level manual efforts are typically required for implementa-

tions or configurations of network appliances from various

vendors [2]. For example, in order to enforce a security intent

to counter against network reconnaissance attacks within an

operational network (e.g., “If we detect a password guessing

attack, we need to redirect the attack traffic to a honeypot.”),

a network operator needs non-trivial efforts to “program”

password guessing detection function and enforcing the correct

response, i.e., redirect the attack traffic to a honeypot for

further analysis.

To ease the pain, some prior development frameworks

and domain-specific languages (DSL) [3], [4], [5], [6], [7],

[8] have been proposed to provide higher-level abstractions

for implementing network security services. However, those

approaches are far from satisfactory for several reasons. First,

understanding such domain-specific programming abstractions

requires a high learning curve for network operators, e.g., un-

derstanding the usage of functional components (e.g., APIs or

modules). Second, the implementation/enforcement of security

appliances still needs non-trivial programming efforts, such as

introducing variables and handling data-flow context between

functional components. Consequently, it remains to be a time-

consuming and labor-intensive task for a network operator to

translate their high-level network security intents into actual

implementations.

Thus, a fundamental research question is still open: Can we

provide a framework to assist network operators in synthesiz-

ing operational network security services directly from high-

level needs in a natural language as automatically as possible?

In order to answer this challenging research question, we

divide it into three sub-questions:

• How to properly model network security services to

balance its expressibility in natural language and the

ability of synthesis?

• How to effectively infer security intents from free-

linguistic descriptions of security needs?

• How to synthesize and instantiate concrete security ser-

vices according to security intents and resource con-

straints?

To answer the first question, we design a novel graph-based

security service intermediate representation (SSIR) between

natural language specifications and actual implementations

of security services. In particular, we adopt a micro-service

architecture [9], [4], [10] that splits the entire security service

into basic function blocks, called security functional blocks

(SFBs), and merges those functional blocks in a Directed

Acyclic Graph (DAG) according to high-level network se-

curity specifications. In this way, we essentially reduce the

problem of automatic network security service synthesis into

the problem of automatic synthesis of security micro-services

according to natural language specifications.

To infer security intents from high-level natural language

descriptions, we leverage Natural Language Processing (NLP)

techniques. Particularly, we convert natural language de-

scriptions for network security policies/specifications into a

normalized form, namely semantic vector that preserves its

semantic meaning as well as reduces the analysis overhead.

Then, we can identify SFBs from the semantic vector by



measuring the semantic relatedness and construct the SSIR

by connecting identified SFBs. Furthermore, considering the

potential incompleteness of natural language specification, we

provide interactive synthesis techniques to help users validate

the generated SSIR by providing preview sentences and smart

interactions.

Traditionally, network security policies are mostly enforced

in specialized hardware or software appliances as middle-

boxes, e.g., firewall, IDS/IPS. However, we consider that such

rigid practices cannot meet the goals for the customization of

user-defined high-level policies. To address the problem, we

propose to leverage two emerging networking paradigms, i.e.,

Software-Defined Networking (SDN) and Network Function

Virtualization (NFV), to provide a unified service enforcement.

Atop SDN, we can enforce service enforcement modules and

a couple of network security preventions and responses. More-

over, NFV techniques can help us make virtualized security

analysis/detection functions in an on-demand way.

In this paper, we propose a novel framework, called AU-

TOSEC,which can aid network operators in automatically syn-

thesizing intended security services according to high-level se-

curity policies. AUTOSEC utilizes NLP techniques/algorithms

to automatically parse user intents from natural language into

an SSIR. Furthermore, considering the potential incomplete-

ness of natural language specification, it allows human in

the loop to perform Interactive Synthesis to validate/refine

the parsed SSIR if necessary. Then, AUTOSEC leverages

SDN/NFV techniques to automatically build up operational

security services on-demand. While not perfect (limitations

discussed in Section X), AUTOSEC represents the first step

towards an important but so far less touched network security

area, i.e., automatic programming of network security services.

Finally, the experimental evaluations and user studies show-

case the effectiveness and usability of AUTOSEC.

The main contributions are highlighted as follows:

• We systematically study the design/implementation of

existing network security appliances and propose a graph-

based intermediate representation, i.e., SSIR, to model

network security intents from natural language descrip-

tions.

• We present an effective SSIR Extractor by using NLP

techniques, which can effectively infer security intents

from textual descriptions.

• We design, implement and evaluate AUTOSEC, a new

framework to program network security services from

natural language policies/specifications.

The rest of the paper is organized as follows: Section II

introduces the background and the problem statement of the

paper. Section III discusses the Security Service Intermediate

Representation (SSIR) of network security service. Section IV

presents the overview and assumptions of AUTOSEC. Sec-

tion V describes the SSIR extraction, validation and refinement

of AUTOSEC. Section VI presents security service compo-

sition and enforcement of AUTOSEC. Section VII presents

the implementation of AUTOSEC and Section VIII evaluates

AUTOSEC. Section IX reviews related work of the paper.

Section X discusses limitations and future work. Section XI

concludes this paper.

II. BACKGROUND AND PROBLEM STATEMENT

A. NLP Preliminaries

Named Entity Recognition. Named Entity Recognition

(NER) is extensively adopted to identify and classify entities

from text into predefined categories, e.g., person names, lo-

cations, and organizations. NER techniques are widely recog-

nized to be domain-specific, i.e., NER systems in one domain

usually work poorly in other domains [11].

Dependency Parsing. Dependency Parsing resolves gram-

matical dependency relations (e.g., determinant, noun com-

pound modifier) between linguistic tokens of the natural

language text. For example, Stanford Dependency Parser [12],

can identify a grammatical dependency relation [13] as triplets

of relation, governor and dependent, i.e., relation(governor,

dependent).

B. SDN and NFV

Software-Defined Networking (SDN). SDN has been

rapidly innovating the networking industry through a new

paradigm of network programming, as it decouples the control

plane from the forwarding appliances of the data plane (e.g.,

routers and switches) into a logically centralized controller. By

providing holistic visibility and flexible programmability, SDN

controllers greatly facilitate network management tasks, e.g.,

load balancing, network virtualization, and access control, in

a flexible and programmable manner.

Network Function Virtualization (NFV). Another trend,

termed Network Function Virtualization (NFV), is to extract

network (middlebox) functionalities from dedicated hardware

boxes to software applications on commodity servers. By

virtualizing network functions, NFV empowers flexible scaling

and on-demand deployment of network services. Moreover,

NFV can also benefit composition and deployment of net-

work security services including firewall, and DDoS detec-

tion/prevention.

C. Problem Statement

The goal of AUTOSEC is to synthesize network security

services that aim to detect, prevent, and respond to mali-

cious/abnormal activities based on metadata information from

network flows, such as flow identifiers (e.g., the Five-Tuple),

payload content, and statistics. Here, we present an example

policy to motivate our system AUTOSEC. One widely adopted

network security policy is to counter attackers with early de-

tection of reconnaissance attempts, e.g., port scanning attacks.

To realize such a security posture, the network operator may

document a high-level security policy as follows: “If we detect

port scanning attacks in the network, we need to redirect these

attacks to a honeypot.”

Existing Practice. Implementing/enforcing such a policy is

non-trivial with existing network security programming frame-

works. First, developers need to conceptualize the security

intents into low-level components (e.g., modules or APIs)



in a specific programming language abstraction and write

programs to synthesize those components with a lot of low-

level programming details. For example, for a simple scanning

attack detection, it takes around 160 lines of code in low-level

programming details on the system in the paper [5] and takes

around 180 lines of code in an optimized Bro script (the initial

version takes over 600 lines of codes). In addition, network

operators need to configure all relevant network devices (e.g.,

Cisco routers or OpenFlow switches) to properly steer the

target traffic to the correctly programmed security appliances.

Such practice is tedious and error-prone due to its complexity.

As a result, network security policies could take a long time

(days to weeks) from plan to installation.

AutoSec Solution. In contrast, upon AUTOSEC, users can

input natural language specifications of the target security

service to generate and deploy the service and interact with the

system to refine it if necessary. More specifically, from nat-

ural language specifications, AUTOSEC aims to automatically

parse security intents including security functions (e.g., scan

detection function and redirect function in the example policy)

and their contexts. Optionally, AUTOSEC provides a human-in-

the-loop feature that allows for interactive synthesis methods.

This enables humans to refine parsed intents as needed. Fi-

nally, AUTOSEC automatically instantiates the parsed security

intents using SDN and NFV techniques.

To further justify the motivation of AUTOSEC, we con-

ducted a user study to understand what real network operators

think regarding the usage of natural language in deploy-

ing/configuring network security services. We recruited 34

respondents, including 14 security experts. We found that most

of the security experts (10 out of 14) reported that, based on

their experience, they have already used the natural language

to firstly express the security need before creating a network

security service. Moreover, the majority of all participants

(82.4% out of 34) thought it is a preferred method to directly

create a network security service from a natural language

description.

III. SECURITY SERVICE INTERMEDIATE REPRESENTATION

Instead of utilizing the monolithic representation for net-

work security services, we adopt a microservice-based model,

i.e., abstract network security functions as microservices and

merge those functions based on natural language descriptions.

The key insight of such microservice-based model is to

hide complicated low-level functional procedures (which can

hardly be expressed in natural language, e.g., machine learning

based algorithms) and hence provide the proper programming

abstraction that can be expressed in natural language and com-

posable in the actual implementation. In this paper, we propose

SSIR to serve as an intermediate representation between

natural language descriptions and actual implementations of

security services.

Definition 1 (Security Service Intermediate Representation).

A security service intermediate representation (SSIR) is a

directed acyclic graph (DAG) G = (E, V ) of a network

security service in AUTOSEC, in which each node V denotes

a security functional block (SFB) and each edge E denotes a

contextual relation between two connected SFB.

Each SSIR consists of a finite number of V and E. Each

V is an SFB, as explained in detail in Section III-A. In this

way, we abstract unwanted low-level implementations such

as details of header classifier. Also, we chain SFBs with

contextual connections (i.e., E in graph G). These edges make

sure of consistent data passing among SFBs. Figure 1 shows an

example of SSIR for the security policy of detecting scanning

attacks. This SSIR consists of three security functional blocks,

in which Header Classifier and Count Classifier are used

to classify suspicious incoming flows, and Alert is used to

respond to those suspicious ones. The edges in SSIR between

security functional blocks denote their contextual connections.

For example, the header classification (with a parameter of IP)

decides the work flow towards the count-based inspection.

Fig. 1. An example SSIR for security policy

TABLE I
EXAMPLE SFBS OF NETWORK SECURITY SERVICE.

Type Example Parameters

Detection

HeaderClassifier src ip, dst ip, protocol

PayloadClassifier payload pattern

RateClassifier rate num, rate unit

CountClassifier count num, interval

StateClassifier state info

Prevention &

Response

Allow src ip, dst ip, protocol

Deny src ip, dst ip, protocol

Quarantine src ip, dst ip, protocol

Redirect src ip, dst ip, protocol

RateLimit src ip, rate num, rate unit

Mirror src ip, dst ip, location

Proxy protocol, src ip, dst ip

Alert alert info

Log log info

A. Security Functional Block

To compose a network security service, we define SFBs

as basic elements to serve network security functions. In this

paper, we define a set of SFBs (examples shown in Table I) that

can cover many common security services (will be expanded

over time). For instance, a firewall may use HeaderClassifier

component to Deny malicious flows and Alert users; payload-

based classification methods, e.g., regex classifier and string

classifier, are widely used in intrusion detection/prevention

(IDS/IPS) systems and data loss prevention (DLP) systems.

We also note that, in some cases, a network operator may

already have some existing/customized security functions that

are not covered by our pre-defined SFBs. In such cases,

we also allow the network operators to supply their ex-

isting/customized SFBs by providing their natural language

descriptions. AUTOSEC will automatically learn/identify pre-

defined and user-supplied SFBs in natural language security

policies (see Section V-B).



As illustrated in Table I, an SFB has two interfaces: type and

parameter. For a specific SFB, type specifies the abstracted

function of the SFB, which can be further defined with

parameter. For example, a Deny SFB can be specified to

block a specific host with parameters of source IP address

or terminate a specific TCP connection with parameters of the

Five-Tuple (i.e., source/destination IP, source/destination port

and tcp protocol).

B. Contextual Connections

To build an SSIR, we also need to reason about the

connections between each SFB. There are different types of

contexts that can be passed between security functions, such as

a numeric value, a logic value and even the header of a packet.

Considering the feasibility of the inferring processing based

on natural language descriptions, we use a logic connection

to denote that the execution of the latter SFB is dependent on

logic metadata (i.e., true or false) from the former SFB in a

specific parameter.

IV. SYSTEM OVERVIEW AND ASSUMPTIONS

System Overview. Figure 2 overviews the process of AU-

TOSEC for synthesizing network security services from natural

language specifications/policies. The intuitive inputs of AU-

TOSEC are natural language descriptions of network security

services, e.g., specified by network security administrators.

The SSIR Extractor module of AUTOSEC extracts internal

security intents from natural language policies and converts

them into an initial SSIR. Next, the SSIR Refiner module

resolves the (potentially) ambiguous mapping (from natural

language descriptions to SSIR) by conducting interactive

synthesis to facilitate validation and refinement of the initial

SSIR. Lastly, the Service Composer module merges multiple

SSIRs into a concise composition to represent the whole space

of policies in scope, e.g., a company, campus or cloud. the

Service Composer module dynamically translates composed

SSIRs into low-level configurations of network appliances

to enforce actual security services. Furthermore, users can

use real network test cases to validate the deployed network

security services and rectify those incorrect intent in SSIR

based on counter-examples.

System Assumptions. An ideal user of AUTOSEC is a

network administrator of an operational network, who can

control and configure network (SDN) controllers, network

switches, and commodity servers to deploy/enforce desired

security services. Also, the network administrator can over-

come the topological constraints in an operational network

by configuring non-OpenFlow devices (e.g., Cisco Router) to

tunnel stakeholders’ traffic to AUTOSEC. We assume network

infrastructures, including network controllers, switches, and

security function provision servers, are not compromised by

an adversary since those resources could be well protected by

the network administrators and not permitted to be accessed by

normal users. Moreover, we assume administrative and control

channels between network administrators, SDN controllers,

and switches are well protected by SSL/TLS. In addition,

we assume that there are no functional or security flaws in

the implementations of these SFBs. The verification of the

correctness of SFBs is out of the scope of this paper.

We assume that the input of AUTOSEC can be decom-

posed into disjoint textual blocks, where each block can be

semantically mapped to a specific security function, i.e., the

security descriptions can be modeled in the form of SSIRs by

composing existing SFBs.

Security 

Service

natural language 

specifications

SSIR 

Extraction

SSIR 

Refinement

Service

Composition

initial

SSIR

refined

SSIR

User

interactive

refinement

composition

constraints

Fig. 2. System Architecture of AUTOSEC

V. SSIR EXTRACTION, VALIDATION AND REFINEMENT

A. Normalizing Natural Language Inputs

In the first step, the SSIR Extractor module transforms

the natural language sentence (for network security policies

or SFBs) into a normalized and context-aware form, called

semantic vector, which reduces some irrelevant terms (e.g.,

stop words) and ambiguous entities (e.g., resource labels).

Definition 2 (Semantic Vector). A semantic vector is a vector

of lemmatized, network-security relevant terms that preserves

the grammatical relations and semantic meaning of a natural

language sentence.

Identifying Network-Security Relevant Terms. To un-

derstand network-security relevant terms, we use a domain-

specific dictionary to identify key terms from textual in-

put, which covers abbreviations (e.g., IP, TCP, ACL) and

phrases (e.g., ICMP Time Exceeded message) mentioned from

Wikipedia and online glossaries of network terms [14], [15].

Moreover, we adopt regular expressions (regex) for matching

domain-specific notations. For efficiency and disambiguation,

we replace identified entities with their named tags, e.g.,

%Protocol for TCP.

Vectorizing and Normalizing. We adopt a tokenization to

chunk processed text into a list of words and remove common

stop language list in English language [16]. Moreover, we

apply lemmatization [17] to normalize each remaining words

to its lemma, i.e., the canonical form of a word.

B. Classifying Security Functional Blocks

Semantic Similarity Measurement. To identify SFBs from

the semantic vector of the input text, we first measure if a

subset of the semantic vector of the input text is semantically

related to one or more semantic vectors of SFBs. We utilize

WordNet [18], a widely used dictionary for ontology [19],

which provide a structured network between two general

concepts including nouns, verbs, adjectives, and adverbs.

Semantic relatedness between two concepts can be estimated



with topological distance by using ontology model [20].

We further utilize Align, Disambiguate and Walk (ADW)

algorithm [21] to measure semantic similarity between two

pairs of terms with arbitrary size as Similarity Score:

SimScore(SV, SFB) = Argmax{x|ADW (SV, x), x ∈ SFB}

N-gram based Classification. With the understanding of

the semantic similarity between two chunks of terms, we then

locate SFBs from the semantic vector of the input text with a

greedy n-gram based algorithm (illustrated in Algorithm 1). In

particular, we first compute a set of adjacency powerset [22] of

input semantic vector that includes all possible n-gram terms

from the semantic vector of the input text. Next, we iteratively

locate the best matching element from adjacency powerset to

SFBs, i.e., the element with the maximum similarity score with

the semantic vector of SFBs. Then we remove all relevant

elements with the identified element from the adjacency

powerset. The iteration terminates if the maximum Similarity

Score of one round is lower than the threshold or the adjacency

powerset is exhaustively explored. After identifying SFBs,

we also attempt to complement their parameters by matching

elements in the semantic vector, e.g., an IP address, to the

parameter lists of parsed SFBs.

Algorithm 1 Classifying Security Functional Blocks

Input: T : semantic vector of input text, ST : a set of semantic vectors of SFBs.

Output: SFB: a list of SFBs correlated with input text.

1: SFB ← ∅, S ← ∅, sv ← ∅

2: Normalize ST

3: for i = 1 to sizeof(T) do

4: Put i-gram of T into ST

5: end for

6: while S != ∅ do

7: Locate the u with maximum SimScore(u, ST ) in S

8: if SimScore(u, ST ) > THRESHOLD then

9: Put corresponding sfb into SFB

10: else

11: return SFB

12: end if

13: remove all subset and superset of u from S

14: end while

15: return SFB

Blackboxing Completion. To handle unidentified security

functions, we also provide a Blackboxing Completion ap-

proach that places a functional blackbox in the SSIR that

allows users to customize their security detection/analysis

algorithms with annotation in the raw input text. AUTOSEC

will automatically the connections between the black box to

other SFBs.

C. Resolving Contextual Connections

To construct SSIR, we further utilize grammatical de-

pendencies to resolve explicit connections between located

SFBs and type-based synthesis techniques to complement

implicit connections. We convert grammatical dependencies

of a sentence into a DAG representation, in which each

node denotes terms in the sentence and each directed edge

denotes their grammatical dependencies. Then we build up

explicit grammatical relations between each semantic group

(corresponding to an SFB) by amalgamating all grammatical

relations. For isolated SFBs, we adopt type-based heuristics

to chain them: 1) a detection SFB (e.g., payload classifier

or count classifier) always points to a prevention/response

SFB (e.g., deny or alert); 2) a header classifier SFB always

precedes other detection SFBs.

D. SSIR Validation and Refinement

We consider that security policies in natural language may

be implicit when inferring network security intents from users’

descriptions due to two reasons: 1) the natural language

specification may ignore low-level details (e.g., parameters for

SFBs); 2) parsing intents from natural language descriptions

(even by using state-of-the-art NLP techniques) may be incom-

plete. To tackle the problem, AUTOSEC conducts interactive

synthesis by providing users a preview of the SSIR parsed

from natural language (an example as shown in Figure 3) and

initiating a smart interactive conversation to facilitate users to

validate and refine SSIR.

IF the flow with Header of IP AND Count 15 times indexed 
by source IP address, destination IP address and 

destination port, THEN Alert user

Type: Header Classifier

Parameter: IP

Type: Count Classifier

Parameter: srcIP, dstIP,

dstPort, 15

Type: Alert

Parameter: -

Fig. 3. Example of SSIR Preview

VI. SERVICE COMPOSITION AND ENFORCEMENT

Given the refined SSIRs derived from SSIR Refiner module

of AUTOSEC, the Service Composer module further composes

consolidated security services and deploys them in the oper-

ational network. Service Composer of AUTOSEC verifies all

classification SFBs (as listed in Table I) for all input SSIRs.

In particular, it first translates each policy into mappings from

conditions to actions. The conditions cover both types of

classifiers and their parameters. For example, the predicate

of IDS policy (in Figure 1) may be presented as “header:tcp,

dst port(443), payload:0x18030200”. Then, Service Composer

locates all pairs of policies that have intersections in their

predicates and resolves their conflicting actions by checking

their priority (if applicable). Service Composer will raise a

composition alert for any unsolved conflict to the network

operators.

Context-aware Processing. According to composed secu-

rity intents, AUTOSEC instantiates them into VMs/containers.

In order to preserve security contexts, we adopt tag-based flow

processing [23] by maintaining a global tag table for the entire

network. When processing a packet, each network device

may inspect its tag and adopt corresponding security actions.

As illustrated in Figure 4, based on the SSIR, the control

plane will pre-assign tags to share contexts between SDN

switches, security NFs and the control plane. Those contexts

cover each flow predicate (in header classifier SFBs) and flags

for security response/prevention SFBs. If a packet matches



predicates specified in header classifier SFBs, the switch will

put the corresponding tag into the VLAN field of the packet

and route it to the port connected to security NFs indicated in

the SSIR. Then the security NFs can handle the packet based

on its logic and the SSIR to add tags for security actions.

Lastly, the SDN switch handles the packet based on the tag

information from security NFs. For user-supplied SFBs and

blackbox security functions, AUTOSEC asks users to specify

the location of the corresponding runnable security functions

(e.g., the attachment of a specific switch port) and tag mapping

information for those functions.

Controller Tag Context

1 Flow�1

2 Flow�2

3 block

4 alert

egress

Security�NFs

flow:1

flow�1,�

tag:�3

flow:�1,�

tag:�1

Fig. 4. Context-aware service composition

VII. IMPLEMENTATION

We use Floodlight SDN Controller [24] as the security

service manager for our system. We implement the service

composition module in Floodlight Controller, which automat-

ically parses SSIRs generated from the SSIR Extractor and

instructs switches and software-based network functions to

enforce it. Moreover, we embed the SSIR Extractor with a

conflict detection engine by using alias set rule reduction

algorithm [25], [26].

We implement 14 SFBs listed in Table I upon abstracted

network resources by leveraging SDN and network functions.

In particular, we leverage Click Router [27] to implement

SFBs for packet/flow analysis. In addition, We also implement

some security prevention/response SFBs within the data plane

by using various actions of OpenFlow flow rules. First, we

use an Output OpenFlow action to implement Allow and

Mirror SFBs: for Mirror SFB, the output port is specified

in its parameter, however, for Allow SFB, the output port

is dependent on the routing service in the controller. In

contrast, we use a Drop OpenFlow action to realize Deny SFB.

We parse Quarantine SFB into a list of flow rules to only

allow communication from a specific host within a restricted

network. For Redirect SFB, we use Set-Field action to modify

the target addresses in the packet header. Moreover, we utilize

Set-Queue action to implement RateLimit SFB. In addition,

we consider that 3 security prevention/response SFBs require

the involvement of the AUTOSEC control plane. For log and

alert SFBs, we pass the packets to the control plane, which

instantiates the corresponding service to record or alert the

detected threat. Also, we implement a SYN proxy service in

the control plane to enforce the proxy SFB.

VIII. EVALUATION

A. Experimental Setup

We evaluated a prototype of AUTOSEC in a Ubuntu Linux

OS. For domain-specific terms, we implement 16 types of

regular expressions for domain-specific named entities (e.g.,

IPv4 address, MAC address, port number, hash) and about 300

domain-specific entries in the dictionary by utilizing Stanford

TokensRegex framework. We choose 0.3 as the threshold

for Security Functional Block classification. To evaluate the

effectiveness of security services generated from AUTOSEC,

we set up an experimental topology based on Mininet [28].

Dataset. We collected security policy descriptions from a

variety of data sources including research papers, descrip-

tions of security appliances, documented real-world security

standards, and human-written security policies. For research

papers, we utilized network security relevant keywords, e.g.,

“network”, “security”, “defense”, to filter out recent 10-year

research papers from S&P, CCS, USENIX Security, NDSS,

and RAID. We manually extract/verify network security-

relevant policy descriptions from data sources. Moreover, we

utilized the search engine to collect security policies for vari-

ous security appliances including iptables, ufw, pfsense. Fur-

thermore, we collected 18 security policies from operational

security specifications including 9 security policies from a con-

figuration standard for real-world operational networks [29]

and 9 network security policies from Payment Card Industry

(PCI) Data Security Standard [30]. In addition, we asked

five people with network security backgrounds to individually

write down security policies to realize 10 security requirements

including 5 access control security requirements referring to

online configuration exercise for security policy [31] and

5 more security requirements for network attack detections.

In total, we collected 190 security policies. Since there is

no ground truth for the security intents parsed from natural

language descriptions, we asked two experts individually label

SFBs and their connections. Then, we took their consent

labeling results as ground truth for our data sources.

B. Evaluations on SSIR Extractor

In this part, we first evaluate the effectiveness of AUTOSEC

in classifying SFBs from security policies. Then, we test

the overall differences between SSIRs parsed by SSIRs and

the manually labeled ones by using edit distance. Lastly, we

evaluate the performance of SSIR Extractor in generating

SSIRs. Note that, we excluded those sentences in security

policies if they do not contain any SFB.

Effectiveness of SSIR Extractor. Columns 2-5 of Table II

showcase the result for the inference of SFBs from AUTOSEC.

In particular, AUTOSEC can correctly locate all SFBs for

84.2% of all our collected policies and over 77% of each

individual data source. Totally, AUTOSEC falsely classified

(at least one) irrelevant SFBs for 15 policies and missed

(at least one) relevant SFBs for 27 policies. One cause of

the misclassification of AUTOSEC stems from some (gen-

erally) semantically related terms (e.g., synonyms) that are



TABLE II
RESULTS OF AUTOSEC: #FI DENOTES THE NUMBER OF POLICIES WITH

INCORRECT SFBS. #MI DENOTES THE NUMBER OF POLICIES MISSING

SOME CORRECT SFBS. %C DENOTES THE PERCENTAGE OF POLICIES WITH

ALL CORRECT SFBS. ED DENOTES THE EDIT DISTANCE BETWEEN PARSED

AND LABELED SSIRS. P/A MEANS PASSED SECURITY SERVICES OVER

ALL POLICIES.

Data Source #FI #MI %C ED P/A

Research paper 3 3 80% 0.85 18/20

Appliance description 4 11 88.2% 0.16 102/102

Human writing 4 9 82% 0.68 49/50

Operational specification 4 4 77.8% 0.78 18/18

Overall 15 27 84.2% 0.43 187/190

not closely related in the context of network security. For

example, AUTOSEC infers Allow SFB from a security policy,

i.e., “For SSH, Bro provides a heuristic that determines if

a login succeeded or failed, based on the volume of data

exchanged as well as the number of packets seen during the

session.” After checking each pair of the term in the dictio-

nary, we found word “provide” and “allow” are synonyms,

which account for the misclassification. Another source of

misclassification of AUTOSEC lies in the failure of handling

negated contexts in security policy descriptions. For example,

AUTOSEC mistakenly locates allow from policy “you don’t

want to allow direct connection from outside”. In addition,

AUTOSEC misses SFBs due to the misunderstanding of terms

with implicit meaning in their context. For example, AUTOSEC

did not infer any classification SFB in policy “Check openSSL

version, and block those lower than 1.0.1g”, because it can

hardly understand the meaning of openSSL version.

We also measured the effectiveness of SSIR Extractor

module by comparing differences between SSIRs parsed from

AUTOSEC and manually labeled ones without consideration of

parameters of each SFB. In particular, we use edit distance as

a metric to determine the minimum transformations between

two graphs. We set the cost of node addition, node removal,

edge addition, and edge removal operations as 1. As a result,

the average edit distance of the SSIRs generated by AUTOSEC

is 0.43 compared with the labeled SSIRs. The small number

showcases that AUTOSEC can effectively assist network ad-

ministrators to set up an initial SSIR from natural language

policies.

C. Effectiveness of Service Composition

To evaluate AUTOSEC in service composition and enforce-

ment, we set up a test topology and tested the effect of actual

service orchestration in the data plane. In particular, we input

the SSIRs parsed by SSIR Extractor and refined (if needed) the

parameters of SFBs in parsed SSIRs during policy refinement

for testing purposes, e.g., configuring thresholds for anomaly

detections or making IP addresses consistent between SSIRs

and devices in the topology. Then, we launched corresponding

test cases, e.g., generating packets to violate ACL policies, to

observe if the SSIR was successfully enforced (e.g., via alerts

in the control plane or monitoring traffic in target devices).

Column 6 of Table II lists the test result. In particular, 187

(out of 190) security services generated by AUTOSEC can

successfully pass their test cases. For those three failed cases,

we find that their corresponding policies include some security

functions that are not provided by AUTOSEC. One of them

is from human writing policies and the rest two policies are

from research papers. In particular, the human writing policy

includes a check of software version in victim servers. The first

policy from papers is a stateful firewall policy that requires to

judge if a packet is authenticated (via web or 802.1x). The

second one from papers is a spam filter policy that needs to

decide if there is a new MTA in the SMTP path. The result also

calls for future research to embed more customized security

functions in AUTOSEC framework.

TABLE III
EXAMPLES OF RED-BLUE TEAM EXERCISE

Red-team Scenarios Blue-team Policies

Port Scanning The script tracks the number of unique ports and destination addresses that

attempts to connect to, generating alarms when they exceed, by default,

15 or 25 attempts within a 5 minute interval, respectively.[5]

Topology Inference One of them counts the number of packets per host pair with TTLs lower than 10.

The second counts the number of ICMP Time Exceeded messages relating to the same hosts.

We consider a traceroute to be in progress if we see at least one low-TTL packet between

a pair of hosts along with at least three matching ICMP Time Exceeded messages.

UDP Flooding The analysis node A UDP identifies source IPs that send an anomalously higher

number of UDP packets and uses this to categorize each packet as either attack or benign.

The function forward will direct the packet to the next node in the defense strategy;

i.e., R OK if benign, or R LOG if attack. [32]

SQL Injection We first wrote a regular expression that matches typical injection URIs (e.g., /site.php?site=5’

and 1=1 and ”=’). We then set up two summary statistic instances to count the number of

times the regular expression matches. For the first instance, the key is the source IP address

while for the second we use the destination address. Once one of the instances hits a

configured threshold of matching requests (50 in 5 minutes), the detector triggers an alert.

Buffer Overflow Detect buffer overflow attack by counting the number of ”0x90” in the payload of the packet.

Unauthorized Access The policy block packets between unprivileged devices and protected servers.

Credential Sniffing The policy sends an alert when it observes keyword “password” in the payload from PCs.

Password Guessing Block the host if several failed HTTP login attempts from the same IP address.

D. Red-Blue Team Exercise

Furthermore, we conducted a red-blue team exercise with

two participants with a network security background. In the

exercise, One participant (the red team) selects some common

network attack scenarios including unauthorized accesses, net-

work reconnaissance (port scanning and topology inference),

UDP flooding, user privacy/credential stealing, SQL injection

attacks, buffer overflow, and so on. The other participant (the

blue team) inputs the defensive security policy descriptions

into AUTOSEC as shown in Table III. In each scenario,

the red team launches a corresponding attack to achieve the

attack goal. Here are some example attack strategies adopted

by the red team: use Nmap to scan the vulnerability of a

public server; utilize traceroute to infer network topology;

employ compromised hosts to launch a UDP flooding attack

against a public server; guess the website credentials of the

user by utilizing dictionary attacks. The blue team inputs

defensive policies (from existing papers, documents, or human

writing) into the SSIR Extractor, refines the final SSIR, and

puts the SSIR into Service Composer to detect/prevent the

attack. In all cases, AUTOSEC can successfully help the blue

team to compose/deploy security services to detect or prevent

corresponding network threats.

We now discuss in detail the case study on scan attacks

to showcase how AUTOSEC can benefit the composition of

security services. The detection policy is from [5] and shown

in Figure 5. As illustrated in Figure 5, a network administrator



(as the blue team) first passed the high-level policy descrip-

tions of scan detection to AUTOSEC, which extracted an initial

SSIR. Based on the initial SSIR, then AUTOSEC provides a

preview sentence as “IF the flow with Header of IP AND

Counter of source IP address and destination IP address is over

15 within 300 seconds, THEN Alert user”, and inquires the

blue team to refine the policy. Note that, during the refinement

conversation, the blue team can also add new security actions,

i.e., redirecting the traffic to a honeynet, into the SSIR. Then

AUTOSEC enforces a service into the data plane from the

refined SSIR. When the red team used Nmap [33] on the

compromised host to launch port scanning attacks to the public

server, AUTOSEC control plane was correctly alerted by such

attack and the suspicious flow was redirected to a honeynet

for further inspections.

AUTOSEC
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Count
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Redirect
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Fig. 5. Scan detection Service using AUTOSEC

E. User Study on the Usability of AUTOSEC

We designed a user study to answer the following question:

When users use AUTOSEC to create a network security service,

do they find AUTOSEC usable in practice (e.g., does AUTOSEC

achieve the goal with no or minimal user refinement)? In this

user study, we first helped the participants explore AUTOSEC

with an end-to-end user experience given real-world scenarios.

Then, we collected participants’ responses regarding both

their step-by-step user experience and overall evaluation of

AUTOSEC.

Methodology. In October 2020, we carried out a user study

that utilized MTurk for participant recruitment and payment,

while Google Forms was utilized to implement the survey

questionnaire. Our user study was designed with two key

principles in mind to ensure high quality and accurate results.

Firstly, we aimed to recruit participants with a foundational

background in network and security to facilitate thoughtful

responses to our survey questions. Secondly, we designed our

survey questions to emulate real-world use cases, enabling

participants to better understand the practical implications of

their responses and provide more meaningful insights.

Recruitment. We recruited 34 participants from MTurk to

conduct the survey. All of the participants are required to have

TABLE IV
USER STUDY RESULT.

Participant Group
Need

Refine

(%)

Refine

Satisfy

(%)

Overall

Satisfy

(%)

Helpfulness

(%)

All Participants 14.7% 80% 84.8% 73.6%

Security Experts 14.3% 100% 92.4% 85.8%
Higher Education

(Bachelor or higher)
6.3% 66.7% 83.9% 71.9%

experience related to network security applications such as

a firewall. When recruiting the participants, we use MTurk’s

criteria filtering function to recruit respondents whose employ-

ment is Industry Software & IT Service. We also collected

their detailed employment and education background, such as

their job titles, work experience, and highest degree earned.

Moreover, we set a requirement of the approval rate (i.e., 90%)

and approval number (i.e., 100) of Human Intelligence Tasks

(HIT) for the participants. We paid MTurk 10 dollars for each

finished HIT.

Survey. Among the 34 respondents, most of the respondents

are male (67.6%). While all of them claimed to be from the

IT field, more than half of them (18 out of 34) identified

themselves to be software developers or similar job titles.

Moreover, we consider 14 of them to be security experts. This

is because their job titles are highly related to the computer

security field. For example, one of them works as “Security

Consultant - Web, Mobile, Network Pentesting”. We also

asked them if they have ever used network security tools

to confirm whether they have the proper knowledge for the

survey. As a result, all of them reported “yes” to this question.

Another question we asked is to check the most familiar tool

or markup language related to network security services. The

result showed that iptables was the most reported one.

Result. To evaluate the usability of AUTOSEC, we first

showed the respondents AUTOSEC’ first step result (e.g.,

Figure 3 in Section V) based on the input natural language

description. Two different scenarios were used in this user

study. Then, we asked the respondents if they were satisfied

with the result AUTOSEC generated. Based on the collected

results from all respondents, most of them (67.6%) thought

the yielded result was good enough and usable for them. Only

14.7% (5/34) of respondents thought that there needs further

refinement to complete service creation (and the remaining

17.7% were neutral). For these 14.7% respondents who chose

to further refine the result, we provided them the options for

what parameters in the modules they could change. As shown

in Table IV, most of these respondents (80%) were satisfied

with the refining process/result provided by AUTOSEC. More-

over, we surveyed their overall satisfaction rate on AUTOSEC

and if they thought AUTOSEC helped reduce the workload

of network security administrators’ job in creating and con-

figuring network security services. The results indicated that

most of the respondents agreed on: 1) they were satisfied with

AUTOSEC user experience; 2) AUTOSEC would significantly

reduce their workload in creating a network security service.



IX. RELATED WORK

Programming Frameworks/Abstractions for Network

Security. Bro [8] provides an event-driven scripting language

for programming network security monitor applications. Ex-

isting SDN controllers [24], [34], [35] allow developers to

write network security applications by using general-purpose

programming language. FRESCO [3] presents an SDN-based

security application development framework to compose net-

work security services by using a scripting language. Open-

Box [4] and Slick [36] propose a programming abstraction to

ease the development and management of middleboxes, which

can also enforce some security appliances, e.g., firewalls and

IDS. Some recent programming language research efforts [37],

[38], [6], [7], [39] offer new domain-specific programming

languages for SDN switches, which also simplify the devel-

opment and deployment of network security services. PSI [40]

proposes a scalable enterprise network security framework to

enforce context-aware, flexible security policies by using DSL

or GUI. However, programming network security applica-

tions/services upon above frameworks/abstractions are still te-

dious since they require users to first conceptualize their high-

level security intents into low-level components (e.g., modules

or APIs) and write programs to synthesize those components

that follow high-level security specifications. In comparison,

AUTOSEC provides a new framework to automatically build up

security services to enforce high-level network security needs

described in natural languages.

NLP for Security and Privacy. We also review NLP

applications in the literature on security and privacy. NLP

is adopted in Android security to check consistency between

applications and their required permissions [41], [42]. Au-

toPGG [43] presents a framework that automatically constructs

descriptions of the privacy policy for Android applications.

UIPicker [44] and SUPOR [45] utilize NLP to locate sensitive

input from Android applications. SEISE [46] leverages NLP

techniques to locate infected websites. iACE [11] showcases

a novel application of NLP for automated cyber threat in-

telligence (i.e., IOC) extractions. FeatureSmith [47] proposes

an NLP-based feature engineering for malware. Compared

with them, AUTOSEC exhibits a novel application of NLP

that bridges the gap between high-level network security

policies (i.e., natural language descriptions) and well-deployed

security services. Moreover, some works [48], [49] have been

proposed to extract access control rules from natural language

descriptions based on semantic/syntactic patterns. Different

from them, AUTOSEC covers diverse types of network security

services without the knowledge of their semantics/syntactics.

NLP for Automated Programming and Configuration.

There are a couple of prior works proposed to translate

natural language descriptions to different types of program

languages [50], [51], [52], [53], [54], [55]. For example,

NL2Bash [50] presents novel data and semantic parsing

approaches to map natural language descriptions to Bash

commands. SQLizer [51] proposes an end-to-end system to

automatically synthesize SQL queries from natural language

and NaLix [52] introduces interactive natural language inter-

face for XML queries. In addition, many works, such as [53],

[54], [55], attempt to translate natural language statements

to general-purpose programming languages. GPT-3 [56] is

proposed to leverage pre-trained language model with task-

specific tuning, which can also automatically generate pro-

gramming code. However, all of those NLP-based automated

program/configuration synthesis systems are coupled with the

syntax of programming/configuration languages, and they can

hardly help synthesize network security applications/services

as AUTOSEC attempts to do.

X. LIMITATIONS AND DISCUSSIONS

Correctness and Security of SFBs. It is clear that

any incorrectly/insecurely implemented SFBs, e.g., with

bugs/vulnerabilities, may incur functional or security breaches

of composed security services from AUTOSEC. The valida-

tion/verification of the correctness and security of SFBs could

be one interesting future work.

Misclassified SFBs. One limitation of AUTOSEC lies in

possibly misclassified SFBs, which is mostly due to the limited

ontology model we use. Our future work plans to build

better network-security-domain-specific ontologies, which can

benefit AUTOSEC and future researches of NLP applications

in network security.

Unrecognizable SFBs and limited SFB number. As any

NLP-based application, AUTOSEC cannot perfectly infer all

intents from descriptions of complicated functions because

of the ambiguous and imprecise natural of natural languages

and the complexity of network security functions. Our current

system supports 14 abstracted general functional blocks that

can be used to compose network security services. This is

certainly not a complete list. Thus, we expect to expand

over time and we also allow user-supplied SFBs. Currently,

to handle unrecognizable SFBs, we provide a Blackboxing

Completion approach as mentioned in Section V-B. Future

work is needed in this space to handle/understand/supply

complex network security functions and we envision new

advances in AI/NLP, e.g. Large Language Models [56], could

benefit this area.

XI. CONCLUSION

In this paper, we propose AUTOSEC to automatically build

up network security services from high-level user security

descriptions/intents. Our evaluation shows that AUTOSEC is

promising. While clearly our work is not perfect and there

is much room to improve, we believe this is an important

first step towards an important security research direction, i.e.,

automatic synthesis of network security services. We hope our

work can stimulate more further research into this area.
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