
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

SysFlow: Towards a Programmable Zero Trust
Framework for System Security

Sungmin Hong1*, Lei Xu1*, Jianwei Huang1, Hongda Li2, Hongxin Hu2, Guofei Gu1, Fellow, IEEE

Abstract—Zero Trust, as an emerging trend of cybersecurity
paradigms in modern infrastructure (e.g., enterprise, cloud,
edge, IoT, and 5G), is moving security defenses from static
and perimeter-based control systems to focus on users and
resources with no assumption of implicit trust. However, the
current Zero Trust Architecture (ZTA) mainly focuses on the
network security and lacks in-depth considerations on system-
level security policies and abstractions, which leaves the re-
alization of the principle incomplete. To bridge the gap, we
propose an innovative programmable system security framework
called SYSFLOW to enable unified, dynamic, and fine-grained
Zero Trust security control for system resources. SYSFLOW
introduces a novel system flow abstraction to model system
activities across the entire infrastructure, and provides a system-
level data plane and control plane separation and abstraction.
The new logically centralized controller accommodates a unified
programmable Policy Decision Point (PDP) that acquires a holistic
view of system behaviors for controlling system resource accesses
by translating programmable security policies into system flow
rules. The SYSFLOW data plane, acting as Policy Enforcement
Point (PEP), enforces translated system flow rules, which can
be updated dynamically and facilitate fine-grained responsive
actions. Our extensive evaluations demonstrate the effectiveness
and scalability of SYSFLOW, which addresses the security issues
in various scenarios with a minor performance overhead.

I. INTRODUCTION

The proliferation of personal mobile devices, cloud-native
apps/services, containers, and the Internet of Things (IoT) has
trespassed traditional security boundaries. Modern enterprise
security must evolve to manage the complex task of handling
continuously changing risks from various locations in a fine-
grained manner. That said, not only are enterprises responsible
for catering secure user access to critical enterprise resources
regardless of locations and devices but also they provide mi-
croscopic security measures to protect every sensitive resource
even in a single host system.

Unfortunately, existing perimeter-based network security
has been a criticized part of enterprise security. Considering
the growth of highly dynamic mobile applications, cloud
computing and containers, IoT devices, etc., the traditional
security boundary becomes blurred out. Furthermore, nar-
rowing down to host-level system security, existing security
practices are mainly coarse-grained and static. Security policy
enforced in a host system cannot easily handle the dynamics

* The first two authors contribute equally to the paper.
1S. Hong, L. Xu, J. Huang, and G. Gu (correspondence author) are

with the SUCCESS Lab, Dep. of Computer Science and Engineering, Texas
A&M University, College Station, TX 77843 USA (Email: ghitsh@tamu.edu,
lexu@paloaltonetworks.com, hjw@tamu.edu, guofei@cse.tamu.edu)

2H. Li and H. Hu are with the Dep. of Computer Science and Engineering,
University at Buffalo, Buffalo, NY 14260 (Email: hli@paloaltonetworks.com,
hongxih@clemson.edu)

of modern applications in a flexible manner. For instance, dy-
namic migration/scale-out of virtual machines and containers
spanning across multiple hosts cannot be easily dealt with
the current security tools such as mandatory access control
(MAC), host-based intrusion detection system (HIDS), and
antivirus (AV) due to the lack of global visibility.

To address these emerging security risks, the zero trust
(ZT) [43] security concept has recently been proposed to focus
on resource protection with a guiding principle that trust is
never granted implicitly but must be continually validated.
Under this principle, resources must be secured from malicious
subjects (users, applications, and other non-human entities
that request information from resources) with finer-grained
perimeterization. However, different from the mainstream Zero
Trust Architecture (ZTA) [4], [8], [16], [23] focusing on
network security, in this paper, we scrutinize the issues of
system security to motivate ourselves to come up with a new
system security framework.

Modern computing facilitates microservice creation, termi-
nation, and migration regardless of physical locations, thereby
trespassing the traditional perimeter dynamically. Suppose that
a business microservice (e.g., eShop) is dynamically migrated
to a host system (e.g., a VM in the cloud) where other
containers are running together as depicted in Figure 1. Once
the attacker passes the network security perimeter provided by
the existing ZTA, the next level of security must be system-
level perimeters. By leveraging container vulnerabilities (e.g.,
CVE-2019-14271 [42]), the attacker may breach the first
line of a system-level perimeter that restricts inter-container
views based on configurations, i.e., namespace isolation. Even
though either a container provides limited functionality and
permissions in an isolated space or a microservice is updated
with a new logic/patch, the vulnerabilities of the container
environment open the gate to enable malicious cross-access be-
tween the container and the system. As a result, all resources in
the host system and other containers are maliciously accessed
by the compromised privileged container. It fails to realize
the ZT principle since there is no easy way to continually
maintain security contexts and analyze/evaluate the risks of
access either between a container and a system, or across
systems in infrastructure with the existing standalone system
security tools [3], [17].

In this paper, we investigate the Zero Trust principle for
programmable system security to protect sensitive resources
in a host system constantly. We extend ZT principle to the
system level to control, monitor, and verify accesses at all
times and gain a global view of subjects and resources across
networks. Also, to better cope with the dynamics, we provide



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Host Namespace 

Microservice

Containers

Networks Memory ...File System

Victim

Victim’s 

namespace

Compromised

Attacker’s

namespace

Kernel

System
Resource

Local
Resource

Host System

Migrate
App Developer/User

Admin

Microservice Update/Migrate

Difficulties:
Protect app’s resources
Consistent security contexts

X

System Security Perimeter
(namespace, MAC, SIEM, …)

Difficulties:
Access control for dynamic
apps
Risk validation for apps
Risk evaluation across
systems in infrastructure

X

Malicious Access

Malicious
Access

X

X

X

eShop

Fig. 1. Motivating Example

the programmability of system security. As a security posture
of a microservice at one location is ephemeral, the frame-
work should be able to dynamically identify the changes of
contexts and move/install the ZT security policy accordingly.
Furthermore, security logic to verify the risks of malicious
access with flexible system-level visibility with contexts can
be programmed through predefined risk verification algorithms
or user-defined security algorithms provided by admins/devel-
opers.

However, we encounter several research challenges in de-
signing our security framework. Regarding the abstraction
of system activities and modeling of system capabilities,
a generalized, global definition should be necessary among
different host platforms from a compatibility perspective.
How to model heterogeneous subjects, such as process and
container as a common abstraction would alleviate confu-
sion to security application developers. To enable high-level
security programmability for Zero Trust at an infrastructure
scale, the framework should support expressive APIs that are
not restricted to specific applications, domains, or languages.
Moreover, the security logic should be dynamically enforced
and updated in response to the dynamics but the realization is
non-trivial to maintain consistency. The visibility is of critical
importance to precisely monitor the behavior of the systems;
however, how to provide admins/developers with a system-
level visibility flexibly with sufficient contexts at runtime
is challenging as well. Last but not least, how to achieve
minor performance overhead is also a significant engineering
challenge.

To address the aforementioned challenges, we propose a
novel system security framework called SYSFLOW for uni-
fied, infrastructure-wide, dynamic, and fine-grained flow-level
programmable security control of system resources, with the
emerging Zero Trust (ZT) principle in mind. SYSFLOW is
a new programmable Zero Trust system security framework
which enables admins/developers to easily write a security
application using SYSFLOW APIs to realize some key Zero
Trust features such as micro-segmentation (which provides
finer-grained, programmable access control and isolation of
system resources) and risk awareness (which continuously
maintains and evaluates risks of accesses), as well as general
system security functions. The primary goal of this work is
to revisit the system security policies and abstractions with

respect to modern computing infrastructure. Sitting in the heart
of SYSFLOW is a general system activity abstraction over
existing system security capabilities. In particular, SYSFLOW
introduces a flow-based model, namely system flow, to abstract
system activities. Inspired by the programmable network flow
model [15] in Software Defined Networking (SDN), a system
flow consists of 3 tuples (source, destination, and operation)
to generically and formally reason about the state of diverse
system activities. In addition, based on the system flow model,
system flow rules are introduced to represent system security
intents.

The flow-based model, introduced by SYSFLOW, provides
a system-level data plane and control plane separation and
abstraction. As a result, SYSFLOW embraces a two-layer
architecture, which includes two major components, i.e., SYS-
FLOW Data Plane (SDP) and SYSFLOW Controller (SC).
In the SYSFLOW control plane, the logically centralized SC
acquires a holistic view of security contexts from the low-
level abstraction of system activities and provides a unified
programming abstraction, even across the entire infrastruc-
ture, to facilitate the flexible implementation and deployment
of diverse SYSFLOW security applications based on system
flows. SDP automatically enforces system flow rules to enable
fine-grained responsive security actions, and to dynamically
update security intents (in the form of system flow rules)
according to the change of contexts. In particular, the flow-
based model treats subjects (users, applications, and other
non-human entities that request information from resources)
as a common entity for generic programmability. Also, it can
enable dynamic reconfiguration of security policies through
our reactive and proactive programming model.

The key contributions of this paper are as follows:
• We introduce a unified programming abstraction for host

systems, namely system flow, which can facilitate the
specification and enforcement of diverse system security
intents for general-purpose system security.

• We design and implement SYSFLOW, a system security
development framework for Zero Trust, to provide ad-
mins/developers with expressive programming interfaces
to easily realize micro-segmentation and risk awareness.

• SYSFLOW provides global, system-level visibility and
logging capability for system activities at runtime, which
can leave a door open for admins/developers to pro-
gram any useful security algorithms that fully leverage
infrastructure-wide visibility.

• Our extensive evaluations show that SYSFLOW is useful
to develop various types of system security apps in
practice and only incurs minor performance overhead.

• We release the source code [20] to benefit future ZT
systems and security research on top of SYSFLOW as
a complementary framework to network-based ZTA.

II. PROBLEM STATEMENT

To realize Zero Trust for system security, resource access
requests and behaviors of subjects should be evaluated con-
tinuously in real-time over the actions inside the system. To
do so, a basic step would be to find how to abstract system
information/behavior and identify an interesting common set



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

of security primitives/functions at a flexible level of granu-
larity. On one hand, existing system call/log-based solutions
are too fine-grained and expensive with extensive raw and
low-level system information for Zero Trust, which is costly
for the centralized control plane to manage. Furthermore,
handling such unstructured information makes the security
system complicated and less compatible with heterogeneous
systems/platforms. On the other hand, if the abstraction is
too coarse-grained, we may lose granularity and flexibility for
Zero Trust applications. For example, AppArmor [3] abstracts
a system in a less complex and easier way using file paths
instead of the labels of SELinux [17] (an instantiation of
Flask [45]) whose policy complexity is an often criticized
drawback [36]. It would be more usable, practical to propose
a balanced abstraction by modeling system information/be-
havior not only with an interesting common set of security
primitives/functions for Zero Trust but also with capabilities
that developers can customize.

The Zero Trust Architecture should allow developers to
enforce security policies to cope with a huge amount of system
events with low-level system details and oftentimes change
security algorithms in response to security threats. However,
existing MAC approaches (e.g., SELinux [36], AppArmor [3])
are limited to configure access control in a local view where
a security server (policy decision point) is merely a kernel
subsystem. Not only such access control approaches, per se,
cannot continuously verify the risk of access requests without
additional security tools but also adding any new security
logic/functions is not supported in general. Moreover, the dy-
namics of hosts/containers require configurations and labeling
(SELinux) to change dynamically, which is challenging to
keep consistent with a local security server. In addition, host-
based security tools, e.g., HIDS, Anti Virus (AV), or DIFT
systems [35], [54] also suffer from laborious, manual efforts in
tracking context and reconfiguration which makes it difficult to
cope with dynamic, ephemeral characteristics of cloud-native
computing.

More visibility into the system can typically help detect
the signs of security problems. It is common to use SIEM
systems (that log, send, and analyze at an infrastructure scale)
for system security in most Zero Trust Architecture [43].
However, we may face different challenges in terms of security
and performance. Many practices in enterprises reveal that
security analytic tools require a comprehensive collection of
raw system events from all host systems using audit logs
sent to a remote server. 3rd-party tools, then, model the raw
information to their definitions and render a security analysis,
e.g., anomaly detection, causality/correlation analysis, etc.
However, not only this ubiquitous monitoring is not a real-
time tool, but also it introduces significant pressure to storage
systems both in a host and a log server. Also, the capabil-
ities of viewing the system internals from the existing tools
are limited to the general system activities between system
objects (process) and resources. For security applications, it is
significantly useful to precisely investigate which process is
running in what containers and micro-services by which user
to handle the dynamics.

Last but not least, realizing system security for Zero Trust

SysFlow Controller

System
Resources

User
Processes
Containers

Risk Profile

PKI

System Abstraction Layer

Event Generator

Flow Table Manager Action 
Scheduler

Channel Handler

Security Programming 
Interface

SysFlow Data Plane

User space
Kernel space

Security
App

Security
App

Security
App

System Events

SysFlow Messages 

Context
Monitor

External 
Func.

1. APIs

2. Program AppSecurity
App

Security
App

Identity 
Management

Resource 
Access Policy

3. Install Flow Rules

4. Monitor, Security
Checks

Data Plane Daemon Channel 
Agent

Admin

Host 

Fig. 2. SYSFLOW components and workflow.

requires solving the performance degradation. As introduced in
ZTA [43], most mainstream ZTAs [4], [8], [16], [23] follow the
centralized policy-decision-point architecture by decoupling
data and control plane to effectively control authentication
and risk verification. However, this architecture would be an
inherent hurdle when applying to Zero Trust system security
where a large volume of extra system information should be
monitored and exchanged. In this paper, we plan to investigate
and answer the following research challenges.

• (C1) How to abstract system activities and model security
capabilities for unified programmability in a generalized
way? (§ IV)

• (C2) How to enable unified high-level security pro-
grammability and handle the dynamics accordingly?
(§ V)

• (C3) How to provide flexible visibility in order to achieve
context-aware Zero Trust control? (§ V)

• (C4) How to achieve minor performance overhead on a
host system? (§ VI)

III. SYSTEM OVERVIEW AND THREAT MODEL

System Architecture. As depicted in Figure 2, SYSFLOW
embraces a two-layer programmable design that includes SYS-
FLOW Data Plane (SDP) and SYSFLOW Controller (SC) in
line with ZTA [43]. The control plane, as Policy Decision
Point (PDP), is used by various infrastructure components to
maintain assets; judge, grant, or deny access to resources; and
perform any necessary operations to set up communication/ac-
cess paths between resources. The data plane acts as Policy
Enforcement Point (PEP) which is responsible for enabling,
monitoring, and eventually terminating access between a sub-
ject and an enterprise resource.

SDP runs in target host systems. SDP Daemon resides
in the user space of the system that is used to intercept
communications between SC and Flow Table Manager in
the kernel. It talks with SC by using the SYSFLOW control
messages (detailed in Section VII and interacts with Flow
Table Manager to manipulate flow tables accordingly. System
Abstraction Layer (SAL) abstracts low-level system activities
to common definitions to support compatibility among dif-
ferent operating systems. Event Generator generates system



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

events based on SAL and further inputs those system events
to Flow Table Manager. Flow Table Manager maintains system
flow rules (in a flow table) to match system events and trigger
Action Scheduler to enforce corresponding actions to control
system activities. Context Monitor supports visibility with
contexts by not only continuously monitoring behavior and
the context of processes/containers based on the flow model
but also capturing application-level context/profile to associate
an application and a user over the access to system resources.
External Security Function offloads part of/the whole security
functions into SDP to reduce the interactions as well as
enabling diverse security functions to place in the data plane
for the immediate, expressive response. Any type of security
functions can be installed by security applications on the
fly, e.g., a customized system call pattern analysis, complex
container defense code, deep packet inspection, and redirection
to other machines for the in-depth analysis.

SC works as a logically centralized control and management
nexus that serves interfaces to collect context information
from all host systems running SDP and install system flow
rules accordingly. The controller provides a unified high-level
programming abstraction and interface to facilitate the devel-
opment of security applications to enforce diverse security
intents (more design details are described in Section V). Also,
the controller accommodates several extensible supporting
components to help admins configure a core security policy,
such as resource access policy (pre-defined access control rules
by admins), risk profile, identity management (host/process/-
container/user identity database and management), public key
infrastructure (key storage for a secure connection between
SC and SDP and for external functions).

General Workflow. To show how SYSFLOW works (Fig-
ure 2), suppose that admins write a security app, File Reflector,
for cyber deception to divert attackers away from sensitive
data. Based on 1⃝ SYSFLOW APIs, 2⃝ the admins write the
File Reflector app (written in Java in our implementation). The
app contains flow rules with actions of redirect to divert access
to a honey file and log to observe further system activities, as
well as a risk profile to validate the risk score of the process.
3⃝ SC installs a set of flow rules converted from the app into
SDP. Then, SYSFLOW monitors the system events specified
in the installed flow rules. 4⃝ When a suspicious process
determined by the risk profile attempts to access sensitive
resources, the redirect action will be executed to redirect file
operations to the honey file. To investigate further system
activities, the flow rules with the action, log, will inform the
app of system activities from the process. The details of the
SYSFLOW flow model and APIs are elaborated in Section IV
and V.

Threat Model. Similar to prior system security ap-
proaches [24], [31], [32], [50], we first assume that the kernel,
in which SDP is running, the communication channels, and the
server running SC are trusted computing base (TCB). Users,
applications, and containers are not trusted as in the Zero
Trust model. We consider that an adversary may attempt to
compromise the availability or privacy of the system resources
protected by SYSFLOW. In this case, the adversary (in the user
space), for instance, may install malware/ransomware, exploit

running processes, or launch denial-of-service (DoS) attacks.
In addition, we make the following assumptions. First,

attacks will happen only after the initiation of SDP and the
controller. Second, attacks based on hardware and side/covert
channels of shared system resources are beyond the scope
of the paper. Third, SYSFLOW can leverage state-of-the-art
integrity-checking mechanisms [33], [44] to determine if there
are any compromises against SYSFLOW components, espe-
cially SDP Daemon in the user space. Emerging hardware-
assisted protection mechanisms such as SGX [26] could also
be used to further protect user-space SYSFLOW components.
Fourth, changing task struct to subvert the subject identity is
assumed to be protected [41]. Lastly, we assume that system
admins and security experts who write security applications
are trusted.

IV. SYSTEM FLOW ABSTRACTION

A. System Security Abstraction

Abstracting the system security is a fundamental step to
provide a higher-level security function atop. Although we de-
sign a similar system abstraction to AppArmor based on LSM
(Linux Security Module), our design choices are clearly differ-
ent from AppArmor which focuses only on access control with
binary actions (allow/deny). Given the Zero Trust architecture
that incorporates existing system security tools to manage the
entire infrastructure, the challenges may include the lack of
balance on complexity in expressibility, extensibility among
heterogeneous host systems, and dynamic programmability for
security functions. The goal of our system security abstraction
should be easy to express, yet contain rich security functional-
ities than the prior security tools (i.e., MAC). The host systems
and security services should neither halt nor be delayed due
to the resource labeling or remote log-based analysis. System
security framework should be able to extend the abstraction
and security functionalities. Admins/security experts should
dynamically program their security logic/function.

To this end (C1), SYSFLOW introduces a flow-based model
for system activity abstraction, called system flow. Inspired by
SDN, we define a system flow as an interaction between sub-
jects (e.g., processes) and observation/access points (system
objects), e.g., file, memory, pipe, and socket, in the system dur-
ing a certain time interval. SYSFLOW constructs a flow table
with a flow match in an entry characterized by src/dst system
objects/resource, system operations, and metadata. Note that,
based on this flow definition, SYSFLOW provides system-
oriented aggregated views on the system activities, just as
SDN supplies common low-level network views and building
blocks via APIs upon which admins/security experts can write
arbitrary controller apps (e.g., various security functions such
as stateful firewall and DDoS detection).

System Event. In an infrastructure, host systems may in-
clude a variety of critical activities, which should be monitored
or controlled according to different security policies. Hence,
we define a general concept of system events to model such
critical system activities for Zero Trust. In this paper, we
particularly adopt system events to cover interactions between
programs/processes and different system resources (e.g., file,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Notations: Integer n, Wildcard *

Match ma ::= <src, dst, type>
Source ID src ::= id | *
Destination  ID dst ::= id | *
Resource  ID rid ::= id | *
Operation Type type ::= n
ID                 id ::= {n1, n2, …, nk}

Action act    ::= pa | (act | act) | (act >> act)
Primitive Actions pa ::= allow | deny | report| message |

log | encode(tag) | decode(tag) | 
redirect (dst1, dst2) | quarantine (pid1, rid2) | 
external(id)

Priorities pri ::= n

System Flow Rule rule ::= <ma, act, pri>

SysFlow Syntax (OSDI)

Fig. 3. Syntax of system flow rule.

socket, and IPC) to model the continuous observation of
subjects’ resource access request and behaviors. The key
difference from the existing work (i.e., MAC approaches) is
that the system events are extensible through Event Generator
as detailed in Section IV-B.

System Flow Rule. SYSFLOW introduces system flow rules
to model system security capabilities upon a sequence of
system events. A system flow rule is formally defined by
the syntax listed in Figure 3. System flow rules are used to
capture system security intents, which include match, action,
and priority. A match is a predicate to match system events
that have the same attributes, i.e., source, destination, or type.
The source of a system flow is the initiator of the flow,
such as processes and users. The destination of a system
flow is the receiver of the flow, such as files, memories,
and sockets. The type of system flow is used to classify
the different interactions between system applications and
resources, e.g., writing a file. Note that a system flow can
be used to represent an exact system event or a group of
system events with the same pattern by using a wildcard
notation (*). For example, a system flow can be specified as
{src : ∗, dst : file1, type : file op write} to match system
events representing any process writes to file1. A system flow
rule uses a list of primitive actions to specify how the system
events should be processed. An innovation over the conven-
tional LSM-based MAC approaches is that SYSFLOW provides
several useful security primitives beyond the capabilities of
LSM as well as the extensibility of the actions. Whereby,
security functionalities can be easily programmed/extended
with the flow model, which is different from single-purpose
security tools such as MAC and SIEM. For example, redirect
aims to change the system flow/operations to a new location
(e.g., system objects and resources) as briefly introduced in
File Reflector. However, the enforcement of redirect action is
challenging to design only with the existing hooks of LSM. To
this end, we place an additional hook to handle the redirect
action. Since a process in the user space manipulates a file
through a file descriptor, we place a hook (fd bind) before the
file descriptor is bound to a specific inode. By invoking the
fd bind hook, we can enforce the redirect action by replacing
the inode of the original file with the inode of any other files.
encode and decode are designed to push/check a contextual tag
into/from network packets, which can be used to enforce cross-
host information flow tracking to protect from data leakage.

We design this action with netfilter due to the limitation of
LSM hooks that do not allow packet modification. Moreover,
we design the external action to embed any security logic
written by security application developers to run close to
resources in SDP. However, the challenge is that running
codes in a kernel module (LSM) requires loading the kernel
module and is not safe to run as sand-boxed programs. To
address this problem, any security logic is designed to run
in an eBPF (Extended Berkeley Packet Filter) VM without
changing kernel code or loading a kernel module.

To address the possible conflicts between different flow
rules, an integer-based priority is used to disambiguate rules
with overlapping patterns. If a system event matches multi-
ple system flow rules, only the highest-priority rule will be
applied.

B. Flow-based Programming Abstraction

In this section, we detail how SYSFLOW supports flexible
system event generation and how security application devel-
opers control low-level system objects on their applications.

System Event Generator. The role of the Event Gener-
ator component is to generate system events by intercepting
system-level activities (e.g., system calls) from hooks in host
systems. It also interprets the semantics of system events
by parsing parameters from those hooks if necessary. Dif-
ferent from the existing work, Event Generator provides an
interface, called sysflow generate event, to allow admins to
generate their own system events to easily extend security
functionalities and expressibility with the flow model. Event
Generator further inputs system events to Flow Table Manager
to reference system flow rules in the flow table and enforce
corresponding security actions.

Resolving Resource Identifier. In many cases, the security
application developers encounter semantic gaps for system
objects. For example, a security application developer may not
know the identifiers (i.e., UUID and inode number) of personal
tax files in the file system of the victim host when they want to
write security apps to prevent the exfiltration attacks. Instead,
they may be aware of the file name and possibly the path.
To bridge the semantic gap, Flow Table Manager enables an
identifier binding and resolution service for system objects.

At runtime, Flow Table Manager maintains the profile table
for system objects. For example, Flow Table Manager will
keep the name of a process in addition to the process identifier.
When receiving the requests to update flow rules that include
attributes of system objects instead of identifiers, the Flow
Table Manager will refer to the profile table to retrieve the
identifier of the system object. In this case, we will install
multiple flow rules if the identifier is not unique. Besides, the
binding service will also monitor the change of the mapping
from non-identifier profiles to the identifier (e.g., from name
to UUID and inode number for a file) at runtime and update
the corresponding flow rule accordingly.

V. SYSTEM SECURITY PROGRAMMABILITY
Our approach is to provide developers with high-level and

unified programmability for Zero Trust as well as generic
system security applications. By leveraging the decoupled



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

architecture, security applications remain less dependent on the
internals of host systems. Integrating separate system security
functionalities such as access control, isolation, monitoring,
and behavior analysis is a non-trivial task in practice. SYS-
FLOW integrates multiple system security functionalities into
a single framework as a unified tool, by allowing users to use
Zero Trust APIs to develop their security applications with
their security functions/algorithms with less hassle.

In this section, we describe how we design SYSFLOW to
provide programmability with finer-grained visibility for Zero
Trust system security to address (C2) and (C3).

A. Programmable Resource Control with Micro-segmentation

Micro-segmentation is a term typically used as a method of
creating logical/virtual security zones in network environments
to isolate workloads from one to another and secure them
individually. When we apply this concept to system security,
it is challenging to realize it. As illustrated in our motivating
example (Figure 1), The basic sandboxing mehcanism of the
container (i.e., Docker) is Linux namespaces. However, names-
paces are tied to resources of the host system that cannot be
isolated since file systems (e.g., cgroups and sysfs) are shared
with the host system. Thereby, a compromised host can access
the sensitive resources that belong to other containers and
system resources through vulnerabilities. To restrict access to
resources among containers, we might utilize a separate MAC
profile (e.g., AppArmor) per container by placing each one in
a separate security context. However, the profile requires the
MAC to restart due to merging into a global profile and starting
with the new one. In addition, the profile is restricted to a
single host, thereby neither being able to build multiple logical
segments nor being installed/updated dynamically upon con-
tainer migration. Moreover, upon changes/patches/fixes of ap-
p/business logic/container/microservice, the existing security
contexts (e.g., interaction related to resource access, behaviors
of processes, etc.) cannot be easily maintained with other
security tools. These highlight why simple updates/patches of
either problematic containers or security profiles for a single
container are difficult to apply to Zero Trust since security
contexts cannot be consistently, persistently maintained/shared
for infrastructure.

To address this problem, we design useful, easy-to-use
micro-segmentation APIs to provide security applications with
convenient programmability as shown in Table I. The identifier
of the micro-segmentation APIs provides admins/security ex-
perts to build their own logically-separate security zone either
by nesting other micro-segmentation or by including new flow
rules, for example, per-user/-container/-system/micro-service
profiles. The APIs, then, are converted into a list of flow rules
for the system to be installed dynamically without restarting
the framework. Furthermore, the key innovation over the
traditional ossified security tools designed for a dedicated
purpose is that different security applications are easily as-
signed/interfaced to each micro-segmentation. For instance,
per-container and -system micro-segmentation may be applied
to a default common set of access control security application
but per-micro-service and -user micro-segmentation can be

TABLE I
LIST OF MICRO-SEGMENTATION APIS.

API Descriptions
ms create(ms id) Create a new micro-segmentation.
ms kill(ms id) Delete a micro-segmentation.
ms alloc(ms id, flow) Allocate system flow into micro-segmentation.
ms free(ms id, flow) Remove system flow from micro-segmentation.
ms acl(ms id, profile) Configure risk profile for a micro-segmentation.

applied to a system firewall and HIDS security application for
specific security purposes. Nevertheless, we face the following
technical challenge when we design the micro-segmentation:
how to handle the micro-segmentation with security contexts
upon the dynamic migration?

Dynamic Policy Programming. To support a dynamic
policy, SYSFLOW provides both reactive and proactive pro-
gramming paradigms.

In a reactive manner, SC first installs monitoring system
flow rules into the data plane, which will report a set of system
events (as contexts) to the controller. Then, the controller
installs corresponding responsive flow rules to react/respond
to the contexts from the reported system events.

The advantage of our reactive programming is that SYS-
FLOW can support tracking the instantiation of containers
dynamically. Unlike the existing security tools that should
constantly keep the consistency from orchestrators for the
dynamics of containers and manually update security policies
accordingly, SYSFLOW reactively collects container informa-
tion and updates security policies accordingly. For example,
suppose a flow rule is watching if nginx component of an
eShop micro-service attempts to take any action, e.g., {nginx,
*, *, report, priority}. Once the flow rule hits, SYSFLOW
will inform the security application. Then, the application
will request SDP to retrieve contexts of the process such
as container ID, micro-service name, creation time, etc. Now
that the application recognizes the container is dynamically
instantiated and it can further install a security policy, e.g.,
denying attempts to access tax files, e.g., {nginx, tax files,
file open, deny, priority}

Reactive flow installation may add an extra latency during
the communications between the data plane and the controller.
Instead, SYSFLOW also provides a proactive flow installation
to allow a developer to offload system event processing logic
into the SYSFLOW external security function in the SDP, as
detailed in Section VI-B.
B. Risk-aware Security Response

From the motivating example, a malicious user of the eShop
microservice who is authenticated with valid credentials may
have access to other user’s resources through vulnerabilities
in the same container. The compromised container can also
break into the host system resources with a root privilege
through container vulnerabilities (e.g., runC, a CLI tool that
runs for each container). It is challenging for the existing MAC
approaches to defend against such attacks because no access
control rule/action to investigate the system activities caused
by the authenticated microservice user. Also, not only simply
denying runC would stop low-level container operations but
the lack of continuous assessment of a risk for Zero Trust
cannot handle the problem. The aforementioned problems



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

highlight why the existing per-container isolation with limited
functionality/permissions cannot be assumed to be protected
reliably, further allowing malicious cross-access due to the
hole/bypass of container security perimeter. Note that although
the example emphasizes on container security, it applies to
generic system security in the context of risk-awareness. SYS-
FLOW is a generic system security framework to address such
problems that isolation-only approaches suffer from. Here, we
summarize three technical challenges to address the problem:
(1) how to provide programming interfaces to evaluate risk?,
(2) how to create meaningful security responses for a further
investigation in lieu of making an allow/deny action?, (3)
how to provide finer-grained security contexts with flexible
monitoring points for the precise risk assessment?.

For the first challenge, to dynamically inspect malicious
access requests and make a reasonable decision based on a
confidence/risk level, SYSFLOW provides risk profile tem-
plates as APIs for different schemes to support risk awareness,
including privilege-based risk profile, context-based risk pro-
file, and scoring-threshold-based risk profile. On top of that,
SYSFLOW enables security applications to write customized
risk logic/algorithm. The privilege-based risk profile is to
directly grant an action for resource accesses, i.e., allow or
deny. The privilege-based risk profile is designed for two
reasons. First, it provides the compatibility to existing rules,
which means admins can easily migrate from their existing
solutions to SYSFLOW. Second, it allows admins to define
specific rules that cannot be covered by other security ap-
plications in SYSFLOW. Also, the context-based risk profile
is to decide access control actions based on the attributes
of the request, e.g., name, create time, and visit history. In
addition, a developer can choose specific scoring algorithms
(e.g., EigenTrust [47]) to rate each access; if the request is
over the threshold, then the request can be granted. Such
the general risk profile may not be applicable to all the
cases. Specifically, when malicious behaviors are detected by
any security applications, the scoring-threshold-based is more
flexible than the previous two since the threshold can be
dynamically modified based on the global risk level.

To address the second challenge, SYSFLOW facilitates the
programmable action. Suppose that the malicious user at-
tempts to read a legitimate user’s sensitive file and send it to
a remote location in a network from the motivating example.
When a security application detects an abnormal risk level,
its response logic can be written to generate a honey file to
deceive the attacker for a further investigation thanks to the
SYSFLOW’s redirect action. Furthermore, SYSFLOW allows
security applications to define their own logic as a new action
via the redirect action.

For the third challenge, we design SYSFLOW to provide
security applications with flexible, global visibility with con-
texts for risk awareness. To determine the contexts useful
for security applications, we collect several context attributes
of system objects that could be used to identify malicious
behaviors. SYSFLOW leverages the components, i.e., PCC:
Process Context Collector, FCC: File Context collector, PFM:
Process File Mapper, and UCC: User Context Collector, to
correlate to contexts. SYSFLOW also utilizes PFM to track and

store the relations between them. PFM correlates the contexts
of processes and files, and stores for consistent tracking. Such
mapping information is not always available in existing mon-
itoring systems because suspicious programs mostly access
sensitive resources by invoking another process, which makes
it hard to trace the original process. UCC extracts the user
context (i.e., usernames) by monitoring specific system calls
during login requests. However, the limitation of such visibility
service is that every time a system event is matched, a report
message should be sent to the controller. To provide the
visibility service in such a reactive way will cause significant
performance overhead. Thus, instead of solely relying on
the controller to handle the context information, SYSFLOW
enables a security application to preprocess the context infor-
mation in SDP with external security functions (e.g., extract
the statistics information from a sequence of system events
instead of sending every context to the security application).

Global, Cross-host Visibility. SC envisions system con-
texts (collected from SDP) to develop security apps among
multiple host systems in the infrastructure by design just as
SIEMs do with log collection. A security app can collect
contexts by registering flow report handler functions in SC
to process flow status reports from installed monitoring flow
rules in a target system. In particular, SYSFLOW supports two
types of (cross-host) context sharing, i.e., reactive controller
updating and proactive packet tagging. In a reactive updating
manner, a security app installs multiple monitoring flow rules
in various systems, registers flow reports to acquire system
contexts from different host systems, and optionally updates
flow rules based on monitored contexts. In a proactive packet
tagging manner, a security app can proactively install flow
rules to leverage encode and decode security actions to en-
capsulate system-level contexts to the tags of outgoing packets
and enforce different security actions based on the tags.

VI. PERFORMANCE OPTIMIZATIONS

Without efficient monitoring and managing system events of
interest defined as a flow, SYSFLOW may not be suitable for
the Zero Trust model due to the performance overhead. Also,
the overhead from the interaction between SDP and SC begets
another hurdle. In this section, we introduce how SYSFLOW
minimizes the overhead to address the challenge (C4).

A. Efficient Flow Rule Management

The low-level security intents of SYSFLOW represented
with a list of system flow rules are embedded in the SYSFLOW
flow table. To support both exact match and wildcard match, a
naive solution for the SYSFLOW flow table is to use a bitwise
classification through a bitwise comparison between incoming
system events and all system flow rules. However, the time
complexity of flow table lookups and updates is O(R), such
that R is the number of system flow rules installed in the table.
As a result, flow rule installation will incur a high latency in
the data plane as R increases.

To design an efficient flow table update and query, we adopt
the Tuple Space Search (TSS) classification algorithm [46].
The key insight of TSS classification is to realize a flow table
as a set of hash tables. In each hash table, it stores the hashed



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

key for each specific system flow rule with the same mask.
Suppose all the flows in a SYSFLOW flow table matched on the
same fields in the same way, e.g., all flows match the source
and destination system object but no other fields. In such a
case, TSS implements a flow table as a single hash table. If
a new flow with a different match is added, TSS generates
another hash table that handles the new match for the flow. To
denote matched fields, we use a 3-bit mask to specify the range
of each hash table. Based on the TSS algorithm, Flow Table
Manager can provide an efficient flow table management, e.g.,
flow rule update/lookup, with time complexity of O(1). 1 As
shown in Section IX-A2, the maximum number of flow rules
to cover all file operations from the fresh installation of Linux
is less than 100,000 and we evaluate the efficiency of our flow
rule management in the evaluation.

B. SYSFLOW External Security Function

The insight of SYSFLOW external security functions is
to offload the system event processing functions/code of a
security app into SDP to reduce the interactions between SC
and SDP. For example, based on deny by default, Zero Trust
applications may request missed flows to be sent to SC for
the further decision. If we report each of flow-miss events to
SC for analysis, the round-trip latency will greatly delay the
attack investigation and response. To address this, we design
SYSFLOW external security functions that can run any security
function code written by the SYSFLOW applications in a safe
sandbox (eBPF VM) in the data plane instead of the controller.
Also, SYSFLOW external security functions are designed to
be securely and dynamically installed in SDP. By leveraging
SYSFLOW external security functions, not only SYSFLOW can
move security logic from a security application to SDP but
also can support processing fine-grained context information in
SYSFLOW external security functions on behalf of the security
applications. We showcase how a reactive security application
can be optimized to enhance performance through SYSFLOW
external security functions in Section IX-B.

VII. SYSFLOW IMPLEMENTATION

A prototype of SC has been implemented in Java2 with
4,267 lines of code (LoC) by using Non-Blocking IO (NIO)
APIs to achieve high event processing throughput. Currently,
SYSFLOW security apps can be developed in Java3 and instan-
tiated as a module of SC.

We have implemented a prototype of SDP on top of Linux
in C with 7,094 lines of code (LoC). SYSFLOW captures a
list of system events based on the Linux Security Modules
(LSM) framework [51]. LSM hooks are used to generate
system events in the SYSFLOW kernel plugin module. It
currently supports a set of file, inode, memory, and socket
operations. In addition, to support system events in containers,
SYSFLOW checks the namespace of processes to pinpoint the

1The flow rule lookup with TSS needs T hashed memory accesses, where
T is a constant value (i.e., 8 in the paper) of the number of tuples. The flow
rule update with TSS needs 1 hashed memory accesses.

2We note the design of the controller is programming language agnostic.
3SYSFLOW currently supports Java-based security apps due to the user-

friendliness and generality of Java.

container that generates the system events. Note that SYS-
FLOW is extensible to support more system level events for
different operating systems. We will discuss the extensibility
of SYSFLOW in more detail in Section X.

Built-in User Context Support. UCC enables visibility
at the application-level. In SYSFLOW, users can utilize
system flow rules and external functions to program
their approaches to extract customized user context from
the data plane. To reduce the work of users, SYSFLOW
provides a general approach to retrieve regular context
with minimal effort. Since most context information visible
in system calls are passed as parameters, we use a six
elements tuple, <process_name, event_name,
parameter_index, context_index,
context_length, condition>, to represent how
we may extract the context information. process_name
represents the name of process. event_name and
parameter_index correspond to the system event and
the parameter that will contain the context information. The
context information can be located in the parameter with
context_index and context_length. condition
shows the requirement of system events that should be
handled.

For each tuple, SYSFLOW will generate a flow rule to
redirect the specific system event to the external function.
The external function will check the condition and extract
the user context. In our current implementation, we only
support the length condition but it is trivial to provide
support for complicated expressions or code snippet written
in C as the condition is a part of the generated exter-
nal function. Then, another system event will be generated,
which will forward the user context to the controller in a
flow report message. For example, the tuple used in UC#3
in Section VIII is <’nginx’, ’io_getevents’, 4,
USERNAME_INDEX, 0, ">1024 && <1596">. The tu-
ple will be converted to a system flow rule and an external
function. The system flow rule matches all io_getevents
syscalls and the external function will extract the username and
generate another system event with user-context information.
SYSFLOW Control Messages. For communications between

SC and SDP, we define three types of control messages
(shown in Table II), i.e., symmetric messages, control-plane-
to-data-plane (CP-to-DP) messages, and data-plane-to-control-
plane (DP-to-CP) messages. The control messages are ex-
changed via a secure channel with SSL/TLS. The details are
briefly described in the table.

Flow Rule Management. Flow rules are managed in SDP
and SC separately. SC can pro-actively and re-actively install
or update flow rules in the flow table by using flow rule
modification messages. A new flow rule is installed in the
flow table upon flow miss after the lookup of a hashed key
and is updated upon flow hit. The flow rules are stored in
the kernel memory for fast lookup. In the controller side, the
management and housekeeping of flow rules freely depend on
how SC apps handle them, as most SDN controllers follow.
The normal operations of security apps are to store flow rules
in the internal storage or database when installing the rules
and to update the entries when updating them via the flow



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE II
SYSFLOW CONTROL MESSAGES EXAMPLE (CP: CONTROL PLANE, DP: DATA PLANE)

Control Message Type Description
Host info request CP-to-DP Request host information
Host info reply DP-to-CP Reply host information
Flow rule modification CP-to-DP Insert/remove/update system flow rules
Flow rule status request CP-to-DP Request the status of system flow rules
Flow rule status report DP-to-CP Report the status of system flow rules
Ext. Func. modification CP-to-DP Add/delete/update SYSFLOW external security functions
Ext. Func. report DP-to-CP Report the status of SYSFLOW external security functions

Kernel

Container
AtSea

Compromised

File System

Networks

Namespace 1

Networks Memory

Local Volume

. . .

etc.

Namespace 2

File System

Networks
. . .

Web-
server

Local Volume

/run/secrets/post
gres_password

File System

SysFlow Data Plane  

SysFlow Controller

Flow
rules

Microseg Application

Resource 
Access Policy

Risk 
Profile

Security Programming 
Interface

/app/AtSea.jar

Fig. 4. Micro-segmentation for microservices.

rule modification message. Also, SC retrieves the status of
the flow table and flows, and the list of flow rules from the
flow tables in SDP using flow rule status request.

VIII. SECURITY APP EXAMPLES IN THE REAL WORLD

We demonstrate the usefulness of SYSFLOW in practice.
The key innovations of SYSFLOW are three-fold. We enhance
the existing system security in the context of Zero Trust
by providing admins with easy programmability for system
resource access control and risk validation in both generic and
container-based systems. Also, SYSFLOW can extend security
functionalities flexibly, not limited to the existing capabilities.
In addition, SYSFLOW can easily integrate with the existing
Zero Trust security through global visibility. We have devel-
oped several security apps for real-world security problems
based on SYSFLOW. Table III categorizes each app by the
capabilities of SYSFLOW. To address each aforementioned
innovation, we demonstrate three example apps for container
security and three apps for generic system security to show
how micro-segmentation and risk awareness with visibility can
be implemented using our APIs.

TABLE III
EXAMPLE SYSFLOW APPS. (NOTATIONS: UP (UNIFIED

PROGRAMMABILITY), DR (DYNAMIC RECONFIGURATION), FV
(FLEXIBLE VISIBILITY), GV (GLOBAL VISIBILITY), PC (PROCESS

CONTEXT), UC (USER CONTEXT))

Name (Type) Description Capabilities
RS (Access Control) Risk-aware micro-segmentation for containers UP, PC
FCAC (Access Control) User-context-aware micro-segmentation UP, PC, UC
File Reflector (Cyber Deception) Reflect suspicious file operations to honeypots UP, FV
CLDLP (Info Flow Control) System/network information flow based DLP UP; GV; DR
VP (Virtual Patching) Virtual patching for container-based system UP, GV, DR
CFDAC (Access Control) Cross-host, context-aware access control UP, GV, DR

UC#1: Risk-aware Micro-segmentation for Micro-
services. We first illustrate the SYSFLOW security application
that leverages our micro-segmentation and risk profile APIs
for the motivating example (Figure 1). As we analyze it

through the paper, the system security perimeter provided by
the namespace isolation is broken when a privileged option
is enabled to grant access to system (and other containers)
resources by exploiting container vulnerabilities. For exam-
ple, in an open-source eShop application, AtSea, app server
is the container that provides web service to users. If the
app server container is compromised, attackers can access
“/run/secrets/postgres password/”, which stores the password
of the database. With the database password, attackers can
access the database and dump the entire database.
1 ### Risk-aware Micro-segmentation for Micro-services
2 ...
3 Host APP_SERVER_HOST = "10.0.0.1";
4 Container APP_SERVER_CONTAINER;//container id of

app_server
5
6 Void init(){
7 ms_create("atsea");
8 Match flow_match = [src: *, dst: *, op_type: *];
9 ms_alloc("atsea", flow);

10 profile = context_profile(Microseg.class.
getMethod("policy", parameterTypes));

11 ms_acl("atsea", profile);
12 mc_deploy("atsea", APP_SERVER_HOST);
13 }
14
15 Boolean policy(sf_obj src, sf_obj dst, sf_type

op_type){
16 container_id = read("/proc/" + src + "/cgroup");
17 if(container_id == APP_SERVER_CONTAINER)
18 return true;
19 else
20 return false;
21 }

Listing 1. Micro-segmentation example.

To mitigate such threat, we developed a security app to con-
fine file accesses within each container scope and prohibit the
malicious requests from the compromised container to AtSea
containers as depicted in Figure 4. As shown in Listing 1,
the application initiates a micro-segmentation for AtSea with
ms create and includes all system flows targeting directories
mapped to the AtSea volumes with ms alloc. In addition, the
application also creates a context-based risk profile to check if
the incoming file access is from a process inside AtSea contain-
ers (based on namespace information). Finally, the application
links the context risk profile to the micro-segmentation with
ms acl. The application will automatically translate the micro-
segmentation policies to flow rules, which forward all requests
inside the micro-segmentation and reject all requests across
micro-segmentation. This use case showcases how SYSFLOW
users can easily write a ZT app with high-level APIs. Our
evaluation shows that the installation of the flow rules in the
example took 7.41ms and the average latency of file operations
inside the micro-segmentation was increased by less than 5%.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

SysFlow Data Plane  

File System

Nginx
Web
Requests Context Monitor

Event Generator
Attacker

admin_photo

attacker_photo

public_css

Flow Table 
Manager

Login crop_image

Owner: attacker

Owner: admin

Owner: *

Read/Write

Read

①

②

③

Fig. 5. Workflow of FCAC in SYSFLOW dataplane.

UC#2: Fine-grained and Context-aware Access Control
in Web Applications. Access control is an essential security
approach to protect resources in infrastructure. However, ex-
isting security systems mostly enforce access control policies
of each application individually with a coarse- or medium-
grained user-based authorization scheme due to the lack of
visibility and high-level programmability. Also, they are either
application-level oriented or system-level oriented. Figure 5
depicts this case. A malicious user can access the private
data of other users by exploiting vulnerabilities inside the
web application. The threat is from an application-level user
to system-level resources. When authentication mechanisms in
the web application are broken/bypassed, system-level security
mechanisms like role-based access control are only aware of
the web application, not the application-level user. Hence, they
cannot detect illegal access. We implemented a Fine-grained
and Context-aware Access Control (FCAC) application to
provide fine-grained access control with the awareness of
contexts in different levels. FCAC app in SYSFLOW will
install flow rules to restrict accesses to files based on the user
profile contexts in the web application. In detail, there are
three rules: 1) FCAC authorizes the access if the file belongs
to the user; 2) any access to files that do not belong to the
user will be denied; 3) Write requests from normal users to
public files will be denied. To determine the owner of a file,
FCAC monitors file operations to record the creator of the
file. The creator is assumed to be the only user of the file.
Public files should be created either by a specific user or before
FCAC is installed. In our test scenario, we ran WordPress 5.0.3
(CVE-2019-8943 unpatched) with Nginx 1.18.0. To extract the
user context (i.e., usernames), FCAC utilizes several system
flow rules by monitoring system call parameters during login
process. The username will be extracted as a user identifier.
We tried to log in the attacker’s account and exploit the
vulnerability to access a photo uploaded by another user.
The access was rejected by SYSFLOW and Nginx returned
404-File Not Found error to the attacker. The results
showcase the effectiveness of cross-application access control
policies enforced by FCAC applications in SYSFLOW. We
also tested the additional latency introduced by SYSFLOW
when 100 users accessing the web application at the same
time. On average, FCAC only increases the response time by
4.17%. Listing 2 shows an abstracted example of SYSFLOW
applications for FCAC.

1 ### Fine-grained and Context-aware Access Control in Web App
2 ...

3 Host WEB_SERVER_HOST = "10.0.0.1";
4
5 monitor_action = String(
6 void monitor_action (char* input, int type){
7 char username[256];
8 char session[256];
9 locate_username(input, username);

10 locate_session(input, session);
11 bind_in_map(username, session);
12 bind_in_map(session, pid);
13 }
14 );
15
16 access_action = String(
17 void access_action(char* file_path, int type){
18 char username[256];
19 find_in_map(pid, username);
20 if(type == file_read){
21 if(!is_owner(username, file_path))
22 return false;
23 else return true;
24 } else if (type == file_write) {
25 add_owner(username, file_path)
26 }
27 }
28 );
29
30 void fcac(){
31 match_monitor = [src:ANY_SOCKET, dst:*, type:socket_open];
32 action_monitor = [compile_action(monitor_action)];
33 match_file_access = [src:NGINX, dst:WEB_DIR, type:ANY];
34 action_file_access = [compile_action(access_action)];
35
36 installSysFlow(WEB_SERVER_HOST, match_monitor,
37 action_monitor, DEFAULT);
38 installSysFlow(WEB_SERVER_HOST, match_file_access,
39 action_file_access, DEFAULT);
40 }
41 ...

Listing 2. An abstracted example of FCAC.

UC#3: File Reflector with Flexible Visibility. Cyber
deception can be a promising technique to divert attackers
away from enterprise/cloud sensitive data for better resource
protection and further attack investigation/forensics. Upon
SYSFLOW, we implement a security application, namely file
reflector, which can automate the deployment of decoy re-
sources in the system to lure potential attacks that aim to
steal or modify sensitive data (e.g., tax/payroll/password) from
protected resources. This example showcases how SYSFLOW
is applicable and extensible to more complicated and advanced
security problems of ZTA that require continuous validation of
access to establish trust reliably. Figure 6 demonstrates a high-
level idea of how file reflector can be realized in SYSFLOW.

1 ### File Reflector application
2 File protected_file = "/etc/passwd"
3 File decoy_file = "/tmp/decoy/etc/passwd"
4 target_host = "10.0.0.1"
5
6 void file_reflector(){
7 match = {src:ANY, dst:protected_file, type:file_open};
8 action = [redirect(decoy_file) | report];
9

10 #install system flow rule in target host
11 installSysFlow(target_host, match, action, DEFAULT);
12 }

Listing 3. An abstracted example of FileReflector.

By using redirect action provided by SYSFLOW as demon-
strated in Listing 3, access attempts (i.e., file open system
events) to the sensitive file (e.g.,“/etc/passwd”) can be added
as multiple actions to redirect to decoy documents in a
programmable fashion. It enables admins flexibly to either
force the access redirection immediately or analyze activities



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Suspicious
Process

Target files

Honey files

…

Access

Fig. 6. High-level idea of file reflector app in SYSFLOW.

Fig. 7. Infrastructure-wide data leakage investigation realized via SYSFLOW.

on honey files without blocking/confusing normal resource
actions. Based on the deception provided by the SYSFLOW
app, administrators can conduct more analytic/defensive logic,
e.g., through a security application via report, log, and an
external security function via external in a flexible, pro-
grammable manner without depending on the raw system
logs. They may inspect the interactive system events between
the suspicious process that was identified by SYSFLOW Risk
Profile and the decoy document to capture follow-up malicious
behaviors. We have also evaluated the performance overhead
for the deception defense, i.e., the latency to redirect file open
attempts from a sensitive file to a decoy one. We observed the
average latency of the deception defense is 2.0 microseconds,
which is negligible considering the average latency of normal
file open accesses (2.5 microseconds). In this case, it can
also somehow hide our redirect security primitives from an
adversary side.

UC#4: Cross-Layer Data leakage Prevention (CLDLP).
Many advanced attacks may exhibit multi-stage manner across
various hosts in a modern computing infrastructure for stealthy
and elusive purpose. Unfortunately, it is not an easy integration
for the existing fragmented network/system-only security tools
for ZTA. In Figure 7 as reported by TrapX [13], suppose
that HostB is less protected by firewalls and other security
tools, for example, a picture and archive communications
system (PACS) designed to easily move medical imagery
(e.g., X-rays) throughout the hospital and offices outside. The
attacker first compromises HostA and then HostB that has
less protection, and ultimately infects HostC (Victim Host) to
exfiltrate sensitive files to outside via HostB (as a stepping
stone). Likewise, this multi-stage data leakage scenario is in
line with cross-host attacks like GitPwnd [7] when HostB
is a Git server as a stepping stone. In the use case, we
showcase how SYSFLOW can help mitigate data exfiltration
scenario. To secure sensitive data from exfiltration, information
flow tracking techniques are widely used at an infrastructure
scale. With the abstraction of system flows, we show a hybrid

SYSFLOW app (as illustrated in Figure 7) that enforces cross-
layer data leakage prevention. The security app installs system
flow rules into the victim host and other hosts in infrastructure
(①). For the victim host, SC installs a system flow rule to
track the system-level information flow from the sensitive file
to any processes. When a sensitive file in the victim host are
accessed by other hosts, a report is sent to SC (②). When
the controller receives the report message from the victim
host, it will reactively install an information flow tracking
flow rule to encode a tag for all outgoing traffic for the
sensitive file.Since the SC has already installed flow rules
on other hosts to instruct SDP to report any observation of
tagged packets received from the socket (④ and ⑥), when SC
receives the report from SDP, it responsively installs flow
rules to propagate the tag for outgoing traffic (⑤ and ⑦).
When attackers in HostA (e.g., inside a hospital) attempt to
retrieve the data in HostB , or when attackers from outside
(e.g., offices outside the hospital or the Internet) try to retrieve
the data via HostB (as a stepping stone), SC will be notified
that the sensitive file is about to leak from HostB . Besides,
the non-stepping stone host, HostA, is also applied with the
data leakage prevention rules easily by this infrastructure-
wide mechanism. Listing 4 shows an abstracted example of
SYSFLOW applications for CLDLP, which impedes data ex-
filtration of a sensitive file (i.e., “/usr/data/medical info”) and
Section IX-B elaborates how we optimize performance by re-
placing the reactive programming with proactive programming
based on external functions.

1 ### Cross-Layer Data Leakage Prevention app
2 File sensitive_file = "/usr/data/medical_info"
3 Tag tag = "dlp";
4 match1 = {src:ANY, dst:sensitive_file, type:file_open}
5 match2 = {src:ANY, dst:ANY_SOCKET, type:socket_read}
6 match3 = {src:ANY, dst:ANY_SOCKET, type:socket_write}
7 # action definitions for report, encode, decode, net(info) flow
8 ...
9 netflow_match = {src:ANY, dst:internet, TOS: tag}

10
11 void information_flow_tracking(){
12 #install a system flow rule to monitor processes
13 #trying to the sensitive file
14 installSysFlow(host1, match1, report_action,
15 DEFAULT)
16
17 #install a system flow rule to report any process
18 #read from tagged socket
19 installSysFlow(host2, match2, report_action,
20 DEFAULT)
21 installSysFlow(host3, match2, report_action,
22 DEFAULT)
23
24 #install a network flow rule in gateway switch to
25 #block outgoing traffic towards Internet with tag
26 installNetFlow(Gateway, netflow_match, [deny])
27 }
28
29 #register handler to encode tags for outgoing traffic
30 callback handleSysFlowReport(report){
31 match = report.match
32 host = report.host
33 if match == match1 or match == match2 then
34 #install system flow rule to tag any process
35 #reads the sensitive file or read tagged socket
36 installSysFlow(host, match3, encode_action,
37 DEFAULT)
38 }

Listing 4. An abstracted example of CLDLP.

UC#5: Virtual Patching. Virtual patching (VP) [21] is a
security policy enforcement layer which prevents the exploita-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

tion of a known vulnerability in a timely manner without wait-
ing for an actual patch release. It analyzes suspicious activities
and intercepts attacks in transit so that malicious access/traffic
cannot reach the victim’s resources. The deployment of the
vulnerable container, however, is dynamically decided at run-
time by container orchestration tools, e.g., Docker Swarm [5]
or Kubernetes [10], which makes the existing security tools
difficult to realize this technique. In this use case, we show-
case how SYSFLOW, thanks to Dynamic Reconfiguration in
particular, easily implements a virtual patch. Suppose that the
vulnerability of a web server, nginx, in Figure 4 is reported
at CVE, admins need a prompt virtual patch for a server
without modifying nginx. To solve this, SYSFLOW can track
nginx using Dynamic Reconfiguration and a virtual patching
application can be written with a defense code to block
the signature payload of the vulnerability. To this end, VP
first installs a flow rule to identify whether the vulnerable
nginx container is running in the swarm cluster of the host.
Upon detecting a process related to vulnerable nginx, VP
dynamically installs virtual patching rules to block an attack
payload containing the discovered path traversal vulnerability
in the corresponding host systems. This procedure can be done
quickly by admins/developers on top of SYSFLOW without
disrupting the current operation of nginx, which emphasizes
the benefits of SYSFLOW’s programmability, holistic visibility,
and dynamic reconfiguration. Listing 5 shows an abstracted
example of SYSFLOW applications for Virtual Patching.
1 ### Virtual patching example (for host1,host2,host3)
2 vulnerable_process = "nginx"
3 legal_path = "/var/www/*"
4 ...
5
6 function vulnerability_monitor{
7 match = {src:vulnerable_process, dst:ANY_FILE,
8 type:ANY}
9 action = [report]

10 # install flow rules for host1, host2, host3
11 installSysFlowRule(host1, match, action, DEFAULT)
12 ...
13 }
14
15 callback virtual_patch_nginx_path_traversal(report){
16 target_host = report.host
17 match = {src:vulnerable_process, dst:ANY_FILE,
18 type:file_open}
19 action = [deny]
20 installSysFlowRule(target_host, match, action,
21 DEFAULT)
22
23 match = {src:vulnerable_process, dst:legal_path,
24 type:file_open}
25 action = [allow]
26 installSysFlowRule(target_host, match, action,
27 DEFAULT)
28 }

Listing 5. An abstracted example of Virtual Patching.

UC#6: Cross-host, Fine-grained, and Dynamic Access
Control (CFDAC). Access control is an essential security
approach to protect important resources in infrastructure.
However, existing security systems mostly enforce access
control policies in a single host with a coarse- or medium-
grained authorization scheme, which may break down in the
context of dynamic environments or complex access policies.
Instead, SYSFLOW can enable fine-grained access control
applications with the awareness of cross-host contexts in a
dynamic manner. Such contexts may include host identity, user

identity, time, file visit history, file name, and so on as well as
Zero Trust contexts (e.g., authentication, permission, etc.). We
assess such a capability by defining dynamic access control
policies enforced by a Cross-host, Fine-grained, and Dynamic
Access Control (CFDAC) application. When a running process
attempts to access the DB service remotely, the CFDAC app in
SYSFLOW installs corresponding flow rules to restrict accesses
based on the device and time contexts. First, the CFDAC
authorizes the access if it is within work hours (e.g., from
9:00 am to 5:00 pm) and only loads trust libraries (e.g., in a
whitelist). Second, any access request from processes is denied
if it is not within work hours. Finally, the access is denied if
the process loads uncertainty libraries. Listing 6 shows the
simplified example of CFDAC that utilizes time contexts to
restrict database access.
1 ### Cross-Host Fine-grained Access Control (for server, client)
2 Process db = "/usr/bin/mysql"
3 match1 = {src:ANY, dst:ANY_FILE, type:open}
4 match2 = {src:db, dst:ANY_SOCKET, type:socket_read}
5 ...
6 # install flow rule to monitor file access
7 installSysFlowRule(client, match1, report, DEFAULT)
8 ...
9

10 callback timer(start_time){ # start at 09:00
11 # revoke flow rule in server
12 revokeSysFlowRule(server, match2, DEFAULT)
13
14 # install flow rule to allow access at 09:00
15 installSysFlowRule(server, match2, allow_act, DEFAULT)
16 }
17
18 callback timer(end_time){ # ends at 17:00
19 # revoke flow rule in server
20 revokeSysFlowRule(server, match2, DEFAULT)
21
22 # install flow rule to deny access after 17:00
23 installSysFlowRule(server, match2, deny_act, DEFAULT)
24 }

Listing 6. An abstracted example of CFDAC.

IX. EVALUATION

In this section, we conduct evaluations to (i) measure
the performance overhead of SYSFLOW to show the minor
overhead on normal system operations, (ii) show the efficient
handling of flow rule updates, and (iii) verify the scalability
of the SYSFLOW controller. In the following evaluations, by
default, we hosted the SYSFLOW controller running on Ubuntu
18.04 with 2 cores of Intel i5 9600K CPU and 16 GB RAM
and for other hosts, we ran Ubuntu 18.04 with 2 cores of Intel
i5 9600K and 8 GB RAM.

A. Data Plane Performance Measurement
In this section, we present the performance of SDP for

micro-benchmark tests, macro-benchmark tests, and scalability
tests. In the following evaluations, we leverage baseline to
refer to systems running an unmodified Linux kernel.

1) Benchmark Results: We used LMBench [11] to evaluate
the run-time performance of system operations. Table IV
depicts the comparison between the baseline and SYSFLOW
with the applications in Section VIII deployed. For two of
the three primary file operations (i.e., read, and write), the
introduced overhead is reasonably low. Our evaluation results
indicate that SYSFLOW mainly impacts the file operations and
mmap. But for other operations SYSFLOW only introduces
negligible overhead.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE IV
LMBENCH RESULTS FOR SDP.

System Operation Baseline SysFlow
best avg worst

Latency of system operations in ms (smaller is better)
file read 0.1913 0.1960 0.1991 (+4.08%) 0.2106
file write 0.1879 0.1901 0.2036 (+8.36%) 0.2273

file open/close 0.4875 0.5124 0.5482 (+12.45%) 0.6124
file create (0k) 2.9717 2.9453 3.0977 (+1.04%) 3.3219
file create (10k) 6.6968 6.8053 7.6874 (+14.79%) 7.4085
file delete (0k) 4.9388 4.9744 5.2591 (+6.49%) 5.6933

file delete (10k) 3.4770 3.5102 3.5924 (+3.32%) 3.8210
syscall 0.0359 0.0354 0.0361 (+0.56%) 0.0371

mmap latency 3418.0 3677.0 3854.7 (+12.78%) 4164.5
pipe latency 2.0840 2.1017 2.1586 (+3.58%) 2.3658

Socket throughput pps (larger is better)
socket I/O 885 890 874 (-1.24%) 842

TABLE V
MACRO-BENCHMARK RESULTS FOR SDP.

Type Baseline SysFlow
best avg worst

Web Server (Nginx) Performance
10K total requests with 500 concurrent connections

Requests per second 3,533 3502 3,478 (-1.56%) 3407
Time per request (ms) 141 143 147 (+4.26%) 154

File Transfer (wget) Performance for 1 GB file
Time to Complete (s) 21.8 21.9 22.3 (+2.29%) 23.3
Throughput (MB/s) 48.0 47.7 46.5 (-3.13%) 45.3

Database (MySQL) Performance with 1M records
Transactions per second 540.6 538.6 535.1 (-1.02%) 529.7

E-shop micro-service
Requests per second 2472 2452 2401(-2.87%) 2397

latency(ms) 44.54 44.87 45.17(+1.41%) 45.62

We tested SDP with macro-benchmarks including web
server performance, file transmission performance, and
database online transaction processing performance. In all of
those tests, we run SDP in both server side and client side
with 1000 system flow rules with default ALLOW actions.
For the web server performance, we used a host running
ApacheBench [2] to test the performance of a Nginx server
by sending 10,000 requests with 500 concurrent connections.
To test the file transmission performance, we used wget
benchmark [22] in a host to test the transmission of a 1 GB
file from a server. For the database performance, we used
sysbench [18] to test a database server with 1 million records.
In addition, we tested the performance overhead of SYSFLOW
upon cloud native e-shop applications with light-4j [14]. We
used ab [1] on the same machine to simulate 4093 users and
recorded the number of requests per second and latency of the
service. The results (Table V) show SDP introduces negligible
overhead on the operations of real-world applications even
across different hosts.

2) Scalability with Flow Rules: We tested the scalability
of SDP using different numbers of system flow rules. We
increased the number of system flow rules from 1,000 up to
100,000 in our experiments (the maximum number of flow
rules is set to 100,000 based on the fact that the number of
flow rules to hit every default file operation can be set less
than 100,000). Since most security practice can be realized by
flow rules with specific actions to specific system objects, the
actions of these rules are all allow and most of them will only
match specific system objects (e.g. specific file). The results
show that the number of system flow rules does not make
significant differences to the performance. Besides the static
flow rules, we also tested SYSFLOW with global file access

control, in which we can get more practical and dynamic rules
as the previous benchmark results show that the file operations
impose the majority of overhead. We deployed an application
to approve file access based on user group, as defined in Linux.
The application has no predefined flow rule. Instead, all flow
rules will be generated at runtime. On a fresh installation of
Ubuntu 18.04 with 332,358 files, SYSFLOW installed 74,519
flow rules (designed to look up all flow entries for each file
with a reduced number of rules using wildcard) in 37.20s after
the system was booted. After that, the delay of file operations
introduced by SYSFLOW is reduced to 4.71% on average. The
results show that SYSFLOW has no significant overhead when
most flow rules have been installed. In addition, we tested
the memory overhead introduced by SDP through the top
Linux command with different numbers of system flow rules as
the memory operation is another major performance overhead
from the previous evaluation. The result shows the memory
usage is about 400 KB for 1,000 flow rules and it grows
linearly with the number of system flow rules inserted. Hence,
SDP is scalable to contain system flow rules for various
system security intents.

B. Efficiency of Flow Rule Update

Reactive App vs. Proactive App. SYSFLOW provides
external security functions to reduce the latency during com-
munications between SDP and the SC. We used the external
function to optimize the reactive implementation of the Data
Leakage Prevention (illustrated in Figure 7) that installs the
flow rules only in response to report messages that contain
access information to sensitive files. We optimized this app
in a proactive way by offloading the operations of reactive
flow installation as a SYSFLOW external security function.
For a reactive application, the delay time tr of the application
consists of three parts: 1) the communication between the data
plane and the controller, which is 3.903ms in our evaluation, 2)
the processing time in the controller for handling a report and
sending a new flow rule to the data plane, which is 0.007ms,
and 3) the processing time in the data plane for installing the
new flow rule, which is 2.447ms. In contrast, for a proactive
application, the delay time tp of the application comprises only
two parts: 1) the processing time that the external function
handles a report and sends a new flow rule back to the flow
table manager, which is 0.004ms and 2) the time that the flow
table manager installs the new flow rule, which is 2.091ms.
We implemented both approaches. The result shows that the
latency is reduced by about 60%, which is approximately the
first part of delay time of the reactive implementation. We
found that tp1 is smaller than tr2. The reason is that external
security functions are implemented in C, thereby slightly faster
than applications implemented in Java.

Dynamic Policy Programming. The comparison of re-
active and proactive apps shows that the dynamic policy
programming of SYSFLOW can significantly reduce the time
cost for dynamic reconfiguration. We measured the overhead
introduced by the dynamic reconfiguration when container
instantiation occurs. We instantiated the identical Ubuntu
18.04 image with Docker on two hosts but only one runs with
SDP. In the evaluation, SC installs one flow rule for each



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

container to deny any access to file /etc/passwd using a
proactive app. Then, we measured the container starting time
on the two hosts by instantiating the image 100 times. For
the host without SDP, the average starting time is 0.374s. For
the host with SDP, the average starting time is 0.381s. The
results show that the overhead introduced is about 1.9%. In
practice, the overhead could be larger since more flow rules
should be deployed. However, the overhead will not increase
significantly since each additional flow rule will only introduce
about 2ms latency.

Sensitivity of Flow Rule Update to Residual Flow Rules.
We added a test code snippet in SDP Daemon that lever-
ages the gettimeofday API with a microsecond timestamp to
measure the latency of inserting/updating/deleting 10,000 flow
rules cumulatively (from 10,000 flow rules to 50,000 flow
rules defined as discussed in Section IX-A2). We repeated
the measurement five times for each case. Figure 8 shows
the average latencies for Flow Table Manager to handle
flow rule modification messages. We can observe that Flow
Table Manager can efficiently handle all types of flow rule
modification messages, e.g., the average latency is around 1.7
ms for inserting 10,000 flow rules when 10,000 flow rules
have been inserted. Thus, the time of inserting rules is almost
negligible. We also observed that the residual flow rules do
not have negative effects on the flow rule modifications since
the latencies for different scenarios are in a constant trend.
As a conclusion, the design and implementation of the Flow
Table Manager can support a rapid reconfiguration for high-
level security intents.

1st 10k 2nd 10k 3rd 10k 4th 10k 5th 10k
1.2

1.4

1.6

1.8

2

la
te

nc
y(

m
s)

add
update
delete

Fig. 8. Composition of system flow rules.

C. Controller Scalability
We tested the event processing throughput of a single SC.

The SC ran a stateful app that installs a new flow-mod
message to allow the read operation upon receiving a flow
report. For the SDP, we built 3 hosts as event generators. Our
event generators send flow rule status report messages to the
controller as fast as possible, which tried to read every file
in the file system. We measured the observed memory and
time cost of each flow mod message. In the evaluation, we
installed 223,496 flow rules in total to the 3 hosts. The average
memory cost for each flow mod message is 479 KB. It is worth
noting that the memory consumed by the flow mod message
will be released when the message has been sent to the host.
Also, the memory cost is independent between different flow
mod messages, which means the needed memory is increasing
linearly as the number of generated events per second is
increasing. For the time cost, most flow mod messages in
our evaluation are sent within 0.01 ms. The time cost of
handling the flow report is determined by the complexity

of the application. Thus, we also measured the time cost in
complicated applications as shown in Section VIII and the
flow mod messages are all sent within 0.4 ms after the flow
report is received. The results show that the memory cost of
handling each incoming flow report and generating a flow mod
message is about 480 KB and the time cost is at most 0.4 ms.

According to the report from Solarwinds [6], a host system
running SDP generates 5 events per second on average, which
means the average number of flow reports from each host
system will be 5 in most cases. Hence, 1 GB RAM can support
the memory needed for around 5,000 host systems running
SDP with the applications. Since SYSFLOW is mainly limited
by the RAM of the controller, which is the cheapest part for
servers nowadays, SC can be easily scalable in most scenarios.

X. DISCUSSION
Diverse Operating System Support. Despite the Linux-

based implementation, we consider the design of SDP is
general. This generality comes from our abstraction of system
events from low-level system activities (i.e., system calls).
Our abstraction bridges the semantic gap between different
types and versions of operating systems to make SYSFLOW
a uniform framework for different operating systems. The
clear separation between the low-level system activities and
the security directives, in addition, makes SYSFLOW easily
portable to other operating systems as long as corresponding
plugins are implemented. One meaningful future work is to
extend SYSFLOW to support more operating systems, e.g,
Windows and Mac.

Application-level Event Control. Currently, SYSFLOW
monitors and controls the interactions between processes and
system resources (in the kernel). However, we consider the
flow-level control scheme proposed by SYSFLOW is general,
which can be extended to process and control application-level
events (e.g., library calls).

System Circumvention. The SYSFLOW Controller could
be a primary target for attackers since it is a central point
of failure. A basic countermeasure is to enforce authentica-
tion, authorization, and access control to prevent unauthorized
intrusive activities to the controller. One may use role-based
access policies that are audited and reviewed consistently and
any modification to them must be audited regularly. Also, the
state-of-the-art security practices could be conducted to harden
SC as part of ZTA control plane components. In addition,
the attacker may attempt to get a root privilege to disable
or bypass SYSFLOW external security functions installed in a
host system. However, SYSFLOW allows only trusted, vetted
code from SYSFLOW Controller to run as external functions in
eBPF VM, which prevents unprivileged users/programs from
modifying or running a JIT compiler with untrusted, unvetted
code by installing system flow rules, which neutralizes the
attack in advance.

Future ZT Features to Add. Zero Trust is not a single
architecture but a set of ideas designed to minimize uncer-
tainty without the assumption of permanent trust [43]. One
feature of ZTA is the continuous authentication of a user,
device, applications, etc., which is not the goal of this paper.
Also, ZTA may support a variety of methods to continuously



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

evaluate and verify trust, such as statistical analysis, machine
learning techniques, which are not the focus of this paper
either. Instead, we provide useful programming interfaces to
write policies and algorithms. We leave other ZT features as
our future work.

Mutual Authentication Zero Trust advocates mutual au-
thentication, for example, checking the identity and integrity
of devices, access to apps and services based on the confi-
dence of device identity and health in combination with user
authentication. However, SYSFLOW includes only the identity
management component for user/container/process/host now.
The reason is that the focus of our paper is to provide a novel
framework for programmable system security to realize Zero
Trust instead of implementing and integrating all existing Zero
Trust components into the framework. Many mainstream ZTAs
have already supported mutual authentication for user/de-
vice/app/service, which is complementary to our research and
could be used/integrated to work together with SYSFLOW. One
future direction includes the integration of our framework with
the existing ZTA components to serve system security for Zero
Trust.

Formal Verification. The desired behavior of SYSFLOW
entirely depends on the flow rules and security functions
issued by applications running on the controller. This may
simplify the formal modeling and verification of SYSFLOW
architecture. The verification tools for SYSFLOW architecture
as a guiding principle to verify the reference monitor and the
whole framework can be built either on flow control references
between the control plane and the data plane or on each plane
just like many SDN approaches [28], [34]. We leave this as
our future work.

XI. RELATED WORK

To date, the increasing number of Zero Trust Architecture
has emerged in the industry, such as Google Beyond Corp [8],
Palo Alto Zero Trust [16], and Zero Trust eXtended [23],
which help organizations better serve a more pragmatic, step-
by-step approach as incremental deployment. However, the
majority of existing ZTAs have mainly focused on network
security and there has been little work to implement a Zero
Trust framework for system security like SYSFLOW. Similar
to network-based approaches, it does not necessarily mean that
there has been no research to implement some ZT principle.
Many prior works have touched some relevant elements that
could be applied to ZTA for system security.

Information Flow Control Systems. Some previous works,
e.g., HiStar [54], Asbestos [27], and Weir [40], propose to
enforce Decentralized Information Flow Control (DIFC) at the
OS level by using labels to define security/integrity contexts
and restrict information flows between kernel objects. These
solutions typically have limited low-level programmability for
protecting information flows between system objects. They fo-
cus on information flow tracking and reasoning but suffer from
insufficient capabilities to handle the dynamics, i.e., visibility
with contexts. Complementing these works, SYSFLOW can
provide flexible programmability based on the system flow
model and the user’s algorithm/logic.

System Resource Access Control. Existing Unix/Linux
systems embed security kernel modules (e.g., SELinux [17]

and AppArmor [3]) to allow users to write mandatory access
control (MAC) policies to protect system resources. To enable
fine-grained access control, process-level firewall [49], [50]
is proposed to prevent system resource attacks by enforcing
more fine-grained access control. However, compared with
SYSFLOW, these approaches have limited local view and
lack the capabilities of dynamic reconfiguration. Some recent
works [37], [39] propose approaches to overcome limited
visibility inside containers. However, deploying current MAC
approaches to container-running systems is still a burden of
manual and static labeling and configurations [25] in coping
with the security over the dynamics of microservices without
a programmable framework like SYSFLOW.

Security Monitoring and Correlation Systems. Alert
correlation is proposed by many existing works [48], [53] and
SIEM systems, such as LogRhythm [12] and IBM QRadar [9],
which correlate log events collected from various sources by
using different indicators of compromise. Also, several stud-
ies [30], [38] also target real-time attack story constructions
from system-level logs. Other log-based approaches partic-
ularly for APT [29], [52] exploit the dependency/causality
relationships of system events defined from interactions among
system objects (processes, files, network connections) in audit
logs to aggregate and reduce the number of log entries while
preserving forensic analysis. A recent platform, sysdig [19],
captures system events through a small driver leveraging
a kernel facility called tracepoints for container monitoring
inside a container. Complementing these works, SYSFLOW
can program the entire operations without log-related burden
and enable a realtime response, which fits to the ZT principle.

XII. CONCLUSION

SYSFLOW presents a novel system security development
framework for programmable ZT security control of host sys-
tem activities at runtime. It offers unprecedented and unified
programmability for users to achieve their dynamic security
needs. The evaluation shows that SYSFLOW is useful to design
diverse Zero Trust system security apps and only introduces
minor run-time overhead.

ACKNOWLEDGEMENT

This material is based upon work supported in part by NSF
under Grant No. 1700544, 2148374, 2226339, and 2129164,
and ONR Grant No. N00014-20-1-2734. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of NSF and ONR.

REFERENCES

[1] ab - Apache HTTP server benchmarking tool. https://httpd.apache.org/
docs/2.4/programs/ab.html.

[2] ApacheBench. https://httpd.apache.org/docs/2.4/programs/ab.html.
[3] Apparmor linux application security. https://wiki.ubuntu.com/

AppArmor.
[4] Cisco zero trust. https://www.cisco.com/c/en/us/products/security/

zero-trust.html/.
[5] Docker swarm orchestration tool. https://docs.docker.com/engine/

swarm/.

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://wiki.ubuntu.com/AppArmor 
https://wiki.ubuntu.com/AppArmor 
https://www.cisco.com/c/en/us/products/security/zero-trust.html/ 
https://www.cisco.com/c/en/us/products/security/zero-trust.html/ 
https://docs.docker.com/engine/swarm/ 
https://docs.docker.com/engine/swarm/ 


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

[6] Estimating Log Generation for Security Information Event and
Management. http://content.solarwinds.com/creative/pdf/Whitepapers/
estimating log generation white paper.pdf.

[7] Gitpwnd. https://github.com/nccgroup/gitpwnd.
[8] Google beyondcorp. https://cloud.google.com/beyondcorp/.
[9] IBM QRadar SIEM. https://www.ibm.com/us-en/marketplace/

ibm-qradar-siem.
[10] Kubernetes, production-grade container orchestration. https://kubernetes.

io/.
[11] LMbench. http://lmbench.sourceforge.net/.
[12] LogRhythm. . https://logrhythm.com/.
[13] Medjack to launch stepping-stone data ex-filstration. https://www.

computerworld.com/article/2932371.
[14] micro-service benchmark framework. https://github.com/networknt/

microservices-framework-benchmark.
[15] OpenFlow specification. . https://www.opennetworking.org/wp-

content/uploads/2014/10/openflow-switch-v1.5.1.pdf.
[16] Palo alto zero trust. https://www.paloaltonetworks.com/

network-security/zero-trust/.
[17] Selinux. https://github.com/SELinuxProject.
[18] sysbench. http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.

1.html.
[19] sysdig. https://sysdig.com/.
[20] SysFlow. https://github.com/successlab/sysflow.
[21] Virtual patching best practices. https://owasp.org/www-community/

Virtual Patching Best Practices.
[22] WGET BENCH. http://www.project-open.com/en/benchmark-wget.
[23] Zero trust extended (ztx). https://www.forrester.com/report/The+Zero+

Trust+eXtended+ZTX+Ecosystem/-/E-RES137210/.
[24] Adam Bates, Dave (Jing) Tian, Kevin R.B. Butler, and Thomas Moyer.

Trustworthy whole-system provenance for the Linux kernel. In USENIX
Conference on Security Symposium (SEC), Austin, TX, USA, August
2015.

[25] Maxime Belair, Sylvie Laniepce, and Jean-Marc Menaud. Leveraging
Kernel Security Mechanisms to Improve Container Security: a Survey.
In International Conference on Availability, Reliability and Security
(ARES), Canterbury, UK, August 2019.

[26] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptol.
ePrint Arch., 2016(86):1–118, 2016.

[27] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey,
David Ziegler, Eddie Kohler, David Mazieres, Frans Kaashoek, and
Robert Morris. Labels and Event Processes in the Asbestos Operating
System. In ACM symposium on Operating systems principles (SOSP),
Brighton, UK, October 2005.

[28] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto,
Jennifer Rexford, Alec Story, and David Walker. Frenetic: A network
programming language. ACM Sigplan Notices, 46(9):279–291, 2011.

[29] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu
Wu, Chung Hwan Kim, Sanjeev R. Kulkarni, and Prateek Mittal.
SAQL: A Stream-based Query System for Real-Time Abnormal System
Behavior Detection. In USENIX Conference on Security Symposium
(SEC), Baltimore, MD, USA, August 2018.

[30] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete,
Rigel Gjomemo, R. Sekar, Scott D. Stoller, and V.N. Venkatakrishnan.
SLEUTH: Real-time attack scenario reconstruction from COTS audit
data . In USENIX Conference on Security Symposium (SEC), Vancouver,
BC, Canada, August 2017.

[31] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini,
Taesoo Kim, Alessandro Orso, and Wenke Lee. Rain: Refinable Attack
Investigation with On-demand Inter-Process Information Flow Tracking.
In ACM Conference on Computer and Communications Security (CCS),
Dallas, TX, USA, October 2017.

[32] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo
Kim, Alessandro Orso, and Wenke Lee. Enabling Refinable Cross-Host
Attack Investigation with Efficient Data Flow Tagging and Tracking.
In USENIX Conference on Security Symposium (SEC), Baltimore, MD,
USA, August 2018.

[33] Nick L Petroni Jr, Timothy Fraser, Jesus Molina, and William A Ar-
baugh. Copilot - a Coprocessor-based Kernel Runtime Integrity Monitor.
In ACM Conference on Computer and Communications Security (CCS),
Washington, DC, USA, October 2004.

[34] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P Godfrey. Veriflow: verifying network-wide invariants in real time. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), Lombard, IL, USA, April 2013.

[35] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control
for standard OS abstractions. In ACM SIGOPS symposium on Operating
systems principles (SOSP), Stevenson, WA, USA, October 2007.

[36] Peter Loscocco and Stephen Smalley. Integrating flexible support for
security policies into the linux operating system. In USENIX Annual
Technical Conference (ATC), Boston, MA, USA, June 2001.

[37] Fotis Loukidis-Andreou, Ioannis Giannakopoulos, Katerina Doka, and
Nectarios Koziris. Docker-Sec: A fully automated container security
enhancement mechanism. In International Conference on Distributed
Computing Systems (ICDCS), Vienna, Austria, July 2018.

[38] Sadegh M. Milajerdi, Rigel Gjomemo, Birhanu Eshete, R. Sekar, and
V.N. Venkatakrishnan. HOLMES: Real-time APT Detection through
Correlation of Suspicious Information Flows . In IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, May 2019.

[39] Amith Raj MP, Ashok Kumar, Sahithya J Pai, and Ashika Gopal.
Enhancing security of docker using linux hardening techniques. In Inter-
national Conference on Applied and Theoretical Computing and Com-
munication Technology (ICATCCT), Bengaluru,Karnataka,India, July
2016.

[40] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha.
Practical DIFC enforcement on Android. In USENIX Conference on
Security Symposium (SEC), Vancouver, BC, Canada, August 2016.

[41] Weizhong Qiang, Jiawei Yang, Hai Jin, and Xuanhua Shi. Privguard:
Protecting sensitive kernel data from privilege escalation attacks. IEEE
Access, 6:46584–46594, 2018.

[42] Michael Reeves, Dave Jing Tian, Antonio Bianchi, and Z. Berkay Celik.
Towards Improving Container Security by Preventing Runtime Escapes.
In IEEE Cybersecurity Development (SecDev), October 2021.

[43] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. Zero trust
architecture. NIST Special Publication 800-207, 2020.

[44] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor:
A Tiny Hypervisor to Provide Lifetime Kernel Code Integirty for
Commodity OSes. In ACM symposium on Operating systems principles
(SOSP), Stevenson, WA, USA, October 2007.

[45] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, Dave
Andersen, and Jay Lepreau. The flask security architecture: System
support for diverse security policies. In USENIX Conference on Security
Symposium (SEC), Washington, DC, USA, August 1999.

[46] Venkatachary Srinivasan, Subhash Suri, and George Varghese. Packet
Classification Using Tuple Space Search. In ACM Special Interest Group
on Data Communication (SIGCOMM), Cambridge, MA, USA, August
1999.

[47] Genc Tato, Marin Bertier, Etienne Rivière, and Cédric Tedeschi. The
eigentrust algorithm for reputation management in p2p networks. In In-
ternational conference on World Wide Web (WWW), Budapest Hungary,
May 2003.

[48] Fredrik Valeur, Christopher Kruegel Giovanni Vigna, and Richard Kem-
merer. Comprehensive approach to intrusion detection alert correlation
. IEEE Transactions on Dependable and Secure Computing (TDSC),
1(3):146–169, 2004.

[49] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer, and Trent Jaeger.
Jigsaw: protecting resource access by inferring programmer expecta-
tions. In USENIX conference on Security Symposium (SEC), San Diego,
CA, USA, August 2014.

[50] Hayawardh Vijayakumar, Joshua Schiffman, and Trent Jaeger. Process
Firewalls: Protecting Processes During Resource Access. In ACM
European Conference on Computer Systems (EuroSys), Prague, Czech
Republic, April 2013.

[51] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg
Kroah-Hartman. Linux Security Module Framework . In Ottawa Linux
Symposium (OLS), Ottawa, Canada, June 2002.

[52] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee,
Xusheng Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. High
Fidelity Data Reduction for Big Data Security Dependency Analyses. In
ACM SIGSAC Conference on Computer and Communications Security
(CCS), Vienna, Austria, October 2016.

[53] Tingfang Yen, Alina Mihaela Oprea, Kaan Onarlıoglu, Todd Leetham,
William Robertson, Ari Juels, and Engin Kirda. Beehive: Large-scale
Log Analysis for Detecting Suspicious Activity in Enterprise Networks
. In Annual Computer Security Applications Conference (ACSAC), New
Orleans, LA, USA, December 2013.

[54] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David
Mazières. Making information flow explicit in HiStar. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Seattle, WA, USA, November 2006.

 http://content.solarwinds.com/creative/pdf/Whitepapers/estimating_log_generation_white_paper.pdf
 http://content.solarwinds.com/creative/pdf/Whitepapers/estimating_log_generation_white_paper.pdf
https://github.com/nccgroup/gitpwnd 
https://cloud.google.com/beyondcorp/ 
https://www.ibm.com/us-en/marketplace/ ibm-qradar-siem
https://www.ibm.com/us-en/marketplace/ ibm-qradar-siem
https://kubernetes.io/ 
https://kubernetes.io/ 
http://lmbench.sourceforge.net/
.
https://www.computerworld.com/article/2932371
https://www.computerworld.com/article/2932371
https://github.com/networknt/microservices-framework-benchmark 
https://github.com/networknt/microservices-framework-benchmark 
.
https://www.paloaltonetworks.com/network-security/zero-trust/ 
https://www.paloaltonetworks.com/network-security/zero-trust/ 
https://github.com/SELinuxProject 
http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.1.html
https://sysdig.com/
https://github.com/successlab/sysflow
https://owasp.org/www-community/Virtual_Patching_Best_Practices 
https://owasp.org/www-community/Virtual_Patching_Best_Practices 
http://www.project-open.com/en/benchmark-wget
https://www.forrester.com/report/The+Zero+Trust+eXtended+ZTX+Ecosystem/-/E-RES137210/ 
https://www.forrester.com/report/The+Zero+Trust+eXtended+ZTX+Ecosystem/-/E-RES137210/ 

	Introduction
	Problem Statement
	System Overview and Threat Model
	System Flow Abstraction
	System Security Abstraction
	Flow-based Programming Abstraction

	System Security Programmability
	Programmable Resource Control with Micro-segmentation
	Risk-aware Security Response

	Performance Optimizations
	Efficient Flow Rule Management
	SysFlow External Security Function

	SysFlow Implementation
	Security App Examples in the Real World
	Evaluation
	Data Plane Performance Measurement
	Benchmark Results
	Scalability with Flow Rules

	Efficiency of Flow Rule Update
	Controller Scalability

	Discussion
	Related Work
	Conclusion
	References

