
The Service Worker Hiding in Your Browser:
The Next Web Attack Target?

Phakpoom Chinprutthiwong
cpx0rpc@tamu.edu

Texas A&M University
Texas, USA

Raj Vardhan
rajvardhan@tamu.edu
Texas A&M University

Texas, USA

Guangliang Yang
yanggl@fudan.edu.cn

Fudan University
Shanghai, China

Yangyong Zhang
yangyong@tamu.edu
Texas A&M University

Texas, USA

Guofei Gu
guofei@cse.tamu.edu
Texas A&M University

Texas, USA

ABSTRACT
In recent years, service workers are gaining attention from bothweb
developers and attackers due to the unique features they provide.
Recent findings have shown that an attacker can register amalicious
service worker to take advantage of the victim such as by turning
the victim’s device into a crypto-currency miner. However, the
possibility of benign service workers being leveraged is not well
studied.

To bridge this gap, we systematically analyze the security of
service workers from a new perspective. Specifically, we consider
how an attacker can leverage a benign service worker installed in
popular websites. To this end, we uncover two attack channels –
IndexedDB and Push notification. Through IndexedDB, an attacker
can compromise a benign service worker and persistently control
the vulnerable website. Likewise, push subscription can also be
easily hijacked and used to track a user’s location. To understand
the prevalence and security impacts of these attack channels, we
conduct a measurement study on popular websites that deploy a
service worker. Our results show 200 websites that are vulnerable to
XSS attacks are also susceptible to push hijacking. We estimate the
number of potential victims, who visit these susceptible websites
and could be exposed to location tracking, to be up to 1.75 million
users per month. Finally, we discuss potential defenses to prevent
this problem from growing further.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
service worker, indexedDB, push notification
ACM Reference Format:
Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, Yangyong
Zhang, and Guofei Gu. 2021. The Service Worker Hiding in Your Browser:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’21, October 6–8, 2021, San Sebastian, Spain
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9058-3/21/10. . . $15.00
https://doi.org/10.1145/3471621.3471845

The Next Web Attack Target?. In 24th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID ’21), October 6–8, 2021, San Sebas-
tian, Spain. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3471621.3471845

1 INTRODUCTION
The service worker (SW) is a type of web worker, a script that runs
in a background thread of a browser. It is executed in a new web
environment, known as the service worker context, which co-exists
with (and is isolated from) the original web environment referred
to as the document context. A website can register a service worker
to enable app-like features such as offline mode or instant push
notifications. Such unique features from service workers enable the
appification of websites so that they can provide mobile users an
experience similar to that of using a mobile app. As a result, we
refer to all SW-enabled websites as the appified web.

As service workers run in a unique execution context and pro-
vide several unique features, they are gaining attention from web
attackers. Lee et al. [20] were the first to discuss how attackers can
abuse malicious service workers to stealthily run a crypto-mining
script. Subsequently, Papadopoulos et al. [25] demonstrated that a
service worker can execute malicious tasks persistently. Addition-
ally, Watanabe et al. [29] discovered an attack where attackers can
register a malicious service worker in re-hosted web services to
hijack websites from different origins. These initial studies have
explored the security impacts when attackers register or start a ma-
licious service worker in a victim’s client. However, such a scenario
may not be as practical because service workers cannot run indefi-
nitely. For the attacker to take full advantage of a malicious service
worker, the victim has to keep visiting the malicious website.

In this work, we consider an attack from a different perspective.
Instead of starting a malicious service worker (i.e., in an attacker-
controlled website), the attacker targets and leverages a website’s
benign service worker. For instance, appified websites often pro-
vide a push subscription, which can also be used to legitimately
determine a user’s location for sending a location-triggered no-
tification. However, we find that an XSS attacker can hijack the
push subscription and leverage it to similarly track the victim’s
location. In fact, as discussed by previous research [19, 24, 26, 28],
XSS vulnerabilities are not uncommon. Our own evaluation of the
practicality of this threat model (Section 6.2) also confirms that a

312

https://doi.org/10.1145/3471621.3471845
https://doi.org/10.1145/3471621.3471845
https://doi.org/10.1145/3471621.3471845

RAID ’21, October 6–8, 2021, San Sebastian, Spain Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, Yangyong Zhang, and Guofei Gu

considerable number of appified websites contains an XSS vulnera-
bility. Furthermore, a recent study [16] identified a novel type of
XSS called Service Worker XSS (SW-XSS), which allows web at-
tackers to compromise a benign service worker during the service
worker registration process. As XSS attacks may only be the tip of
the iceberg, we aim to explore possible attack channels that XSS
attackers can utilize to further leverage a benign service worker.

To this end, we first examine four communication channels be-
tween the document and SW contexts. We find two potential chan-
nels, IndexedDB and push notification, that can be utilized by at-
tackers. For instance, the IndexedDB can be used to inject malicious
code into the SW context, allowing attackers to fully compromise
the service worker. Additionally, we find that attackers can remotely
track the location of the victim who subscribes to push notification.
Such attack also does not require attackers to fully compromise the
benign service worker (only need to hijack the push subscription),
contrary to the requirements of existing attacks on service workers
that normally need the attackers to at least run malicious code
inside the SW context.

Then, to demonstrate that the attack channels can be utilized
in practice, we examine real-world websites that deploy a service
worker. In this process, we uncover real cases of vulnerabilities
in the two attack channels. First, we find some websites blindly
trusting the data from the IndexedDB (IDB), a shared storage space
between the document and SW contexts, and use it inside critical
functions inside the SW context. Although the SW context is iso-
lated, information from the document context can flow into the
SW context through this channel. Second, we find legitimate push
services providing location-based notifications, which can similarly
be utilized by attackers to track a user’s location. Furthermore, the
push subscription can be easily hijacked by attackers as there is no
security check in the (un)subscription processes.

Finally, to assess the security implications of these attack chan-
nels in the wild, we extend a taint tracking tool developed by
Melicher et al. [22]. We add two taint sinks (IDB’s put and im-
portScripts) and two taint sources (IDB’s get and push message)
to the original tool. Then, we conduct a taint analysis on 7,060
popular appified websites. Our findings show that 5 websites can
have their service workers compromised through the IndexedDB.
Moreover, 200 websites that are already vulnerable to XSS attacks
can have their push subscriptions easily hijacked. Based on the
total number of visits to these susceptible websites, we estimate the
upper-bounded number of potential victims, whose locations can be
exposed to an XSS attacker, to be up to 1.75 million users per month.
Note that these problems could not only be exclusively considered
taking into account the current percentage of vulnerable websites
but also future incorrect implementations. We manually evaluate
the results from our tool and estimate the false positives/negatives
to be minimal.

In summary, our contributions in this work are as follows:

• We analyze service workers, their communication channels,
and the security design to uncover flaws in two channels,
IndexedDB and push notification (Section 4).

• We demonstrate how attackers can utilize the flaws to lever-
age the supposedly secure and isolated SW context of a
benign website using real-world examples (Section 5).

• We design a measurement tool and extend an existing taint
tracking tool to assess the security of service workers. Our
findings estimate up to 1.75 million users of popular appified
websites are potentially exposed to location tracking per
month, and five appified websites are vulnerable to service
worker hijacking through the IndexedDB (Section 6).

2 BACKGROUND AND RELATEDWORK
In this section, we first provide more background on the appified
web. Then, we motivate our research by discussing existing web
attacks and briefly review why further study is needed to better
enhance the security of service workers.

2.1 Appified web
In this work, we refer to the term appified web to represent websites
with service workers. Appified web includes several basic elements,
such as (1) service workers, which serve as the back-end and handle
background tasks and events, and (2) manifest files, which provide
the configurations for web appification. As per our definition of
appified web, a service worker must be present, but a manifest file
is optional. These components serve in conjunction to deliver users
a smooth browsing experience. Naturally, the Progressive Web App
(PWA) is considered an appified website by our definition as a PWA
requires both a service worker and proper manifest declaration [12].
The overview of how an appified website (or PWA) interacts with
a service worker is shown in Figure 1. As our study considers all
websites with service workers, the PWA is also in the scope of our
evaluation.

Service worker. A service worker is defined in a JavaScript file
and runs in a background thread of a browser. It is registered from
the document context and tied to a specific path of a host. As shown
in Figure 1, primarily, a service worker is used to provide two crucial
functions: enabling offline usage by intercepting network requests
and serving cached content; and receiving push messages to display
push notifications.

To provide an offline mode to users, a service worker can inter-
cept network traffic of the website where it is registered through
the fetch event handler. The normal usage of this feature is to cache
web resources and response when the network is offline. However,
it also gives attackers MITM capability when compromised. The
attackers can redirect any request to an arbitrary destination and
inject any content into the response.

To handle push messages that can arrive spontaneously, a service
worker runs in the background thread of the rendering browser,
which can execute even when its window is closed. Additionally,
once registered, the service worker can exist until the SW file is
updated. Attackers can use this feature to run botnets or mine
crypto-currency in the background or keep control of the document
context for a long period through network interception.

Because these unique capabilities can potentially introduce new
risks, web browsers are designed to limit the efficacy of malicious
service workers. Previous studies have shown that malicious ser-
vice workers can be used to turn a victim’s client into a botnet [20],
a crypto-miner [25], (user’s unintended) proxy service [13], or to
compromise other websites in a re-hosted environment [29]. To
address these attacks (and other foreseen problems), web browsers

313

The Service Worker Hiding in Your Browser:
The Next Web Attack Target? RAID ’21, October 6–8, 2021, San Sebastian, Spain

navigator.serviceWorker.register(‘sw.js’)

self.addEventListener(‘fetch’, function(…));

self.addEventListener(‘push’, function(…));

*Add to Home

Offline Usage

Push Notification gcm_sender_id

Manifest

*name,
start_url,

icons

Service Worker Context

Figure 1: Service worker registration process and PWA in-
stallation.

have intrinsic defenses that can limit the effect of a malicious ser-
vice worker. For instance, a service worker can only run for 30
seconds per event, which minimizes the effect of a crypto-mining
service worker. Additionally, browsers prevent cross-domain files
from being registered as a service worker. This supposedly prevents
untrusted scripts from registering a service worker from an arbi-
trary host to replace an existing benign service worker. Hence, it
may be imperative to explore another attack angle where attackers
may utilize a benign service worker and prepare countermeasures
before such problem arise.

Manifest. Similar to Intent declaration in an Android App [1],
a manifest file, structured as a JSON, declares different attributes
(including notification-related) of the appified web. The manifest
file is also well protected as its origin must be the same as the
homepage domain (similar to SW script registration) and is usually
sent through HTTPS in the appified web. This limits the possibility
of attackers manipulating the manifest file of a website.

2.2 Existing web attacks
As our work assumes the presence of XSS (Cross-site Scripting)
attackers, we first review recent existing work that are germane
to our study. Stock et al. [28] studied the history of client-side
security and showed the prevalent of XSS attacks over a decade
while identifying the root causes of the issue, which can stem from
insecure postMessage handling or usage of outdated JavaScript
libraries. This is in line with Lauinger et al. [19] finding on the
study of outdated JavaScript libraries that manywebsites use known
vulnerable third-party libraries. Lekies et al. [21],Melicher et al. [22],
and Steffens et al. [27] also studied an emerging type of client-
side XSS attack called DOM-XSS using taint tracking. Despite the
effort from the research community over the past decades, XSS
is still prevalent in the web nowadays. In this work, we study an
orthogonal aspect of how XSS attackers can utilize a relatively
new technology, the service worker, for their extended advantages.
While XSS attacks are well studied, how it can affect the secure
context inside a service worker has not been thoroughly discussed.
Our work explores this direction by identifying bridges between

example.com/index.html

SW Context

Proxy

Push
Handler

IndexedDB
APIs

Push
APIs

Embedded
Scripts

Document Context

Web Servers

Browser's background process

Figure 2: Appified web threat model & attack channels.

the document and the SW contexts, and demonstrate how attackers
leverage benign service workers in practice.

There are several studies that target the security of service work-
ers. Lee et al. [20] are the first to discuss attacks in Progressive Web
Apps. They proposed novel attacks on the Cache and Push notifi-
cation APIs based on insecure HTTP hosts. Our work assumes a
different threat model with HTTPS enabled to hijack push subscrip-
tion. Papadopoulos et al. explored potential issues with malicious
service workers, which can be used by malicious websites to make
users become a botnet or mine crypto-currency [25] for the at-
tackers. Our work assumes service workers are benign but may be
vulnerable while third-party scripts try to leverage the vulnerability
to utilize the benign service worker. While Watanabe et al. [29]
shared the same goal of compromising a benign website, our work
assumes a different threat model where the target websites are not
in a re-hosted environment. Chinprutthiwong et al. [16] shared
our threat model and demonstrated how XSS attackers can com-
promise a benign service worker by manipulating the URL search
parameters specified during its registration process. Our work ex-
pands upon this threat model and discover novel attack channels
to leverage benign service workers.

3 THREAT MODEL
In this work, we assume that the service worker and all imported
files in the service worker are benign. Additionally, all network
links in an appified website are made over HTTPS, and we assume
the absence of network attackers. Instead, we assume the presence
of XSS attackers who utilize an XSS vulnerability in the document
context to further compromise or leverage the service worker as
shown in Figure 2. As discussed by Chinprutthiwong et al. [16],
this gives the attacker more extended capabilities and attacking
options including bypassing certain defenses and controlling the
push subscription. Such options are especially worthwhile when
the website credentials are well protected or simply do not exist.
We further evaluate the practicality of this threat model in Section
6.2.

4 ATTACK CHANNELS
In this section, we examine four communication channels (postMes-
sage, Cache, IndexedDB, and push message) between the document
and SW contexts. As a result, we identify two potential targets for
attackers: the IndexedDB and push APIs. First, we observe that the
IndexedDB can be modified from the document context and read

314

RAID ’21, October 6–8, 2021, San Sebastian, Spain Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, Yangyong Zhang, and Guofei Gu

inside the SW context, allowing attacker-controlled data to reach
sensitive functions. Second, the push subscription can be easily
hijacked by XSS attackers as there is no security mechanisms to
verify the subscribing party. As a service worker is used to handle
the pushmessage event, the hijacked push subscription can be used
by the attackers to potentially leverage the benign service worker.
Therefore, these two channels make it lucrative for attackers to
pursue the benign service worker.

4.1 postMessage
This communication channel is the most direct method. It allows
communication between the document and SW contexts and also
between different iFrames. As studied by Guan et al. [17] and Son et
al. [26], this communication channel can be leveraged by attackers
to attack iframes. Regardless, we do not consider this channel as
the main target for attackers in our threat model for two reasons.
First, service workers are event-based, and their functionalities
are heavily tied to event handlers, especially the fetch event han-
dler that can intercept network traffic. According to the W3C’s
specification, the event handlers cannot be registered after the SW
installation phase is done. The postMessage also utilizes themessage
handler, in which attackers would already have no way to register
another event handler once the postMessage is ready to be used.
Second, unlike the push message that can be triggered remotely, the
postMessage needs the document context to be active. Therefore,
there is no reasons for attackers to use the service worker when
they cannot utilize its full potential (i.e., of the fetch event), and the
document context already runs malicious code. Nevertheless, the
attackers can still use this channel as a means to communicate with
the malicious code inside the service worker that is established
through a different channel (i.e., IndexedDB).

4.2 Cache
The Cache API is shared by both the document and SW contexts
to provide offline usage to an appified website. In another threat
model, this channel can potentially be used by attackers, i.e., by
determining the state of the victim through Cache [18]. In our threat
model, XSS attackers in the document context canmodify the Cache
and wait for the service worker to run the malicious code inside
the service worker. However, we find that the information flow is
the opposite in practice. Specifically, it is the service worker who
writes to the Cache, and the applied changes affect the document
context instead. In fact, the most common usage of the Cache API
is to store the document context’s static assets, which are already
accessible by attackers in the document context. Therefore, we do
not consider the Cache API to be the target of attackers in our
threat model.

4.3 IndexedDB
The IndexedDB is storage that works asynchronously, thus can be
used inside the SW context, unlike the sessionStorage and localStor-
age APIs. As it is origin-oriented (determined by the protocol/host/-
port), it is protected from other website’s accesses. Nevertheless, it
has no defense mechanisms for service workers against untrusted
scripts embedded in the document context. The document and
SW contexts may be executed in isolation, but the IndexedDB has

shared storage spaces that can be the weak link to let temporary
XSS attackers to manipulate critical program states or the vari-
ables of service workers. For instance, it is possible for attackers
to completely compromise the benign service worker if the data
fetched from the IndexedDB is used inside a sensitive function like
importScripts. Furthermore, the IndexedDB does not need a dedi-
cated event handler like the postMessage, making it more available
inside the service worker. Once compromised, the service worker
can be used by the attackers to extend the initial attack such as to
bypass certain client-side defenses or turn a temporary compro-
mised session into a permanent one [16]. We illustrate a practical
attack using the IndexedDB in a real-world case study in Section
5.1.

4.4 Push message
Notifications in the appified web closely resemble native app push
messages, but they are handled by the browser (e.g., Chrome) in-
stead of the OS (e.g., Android). To use push notifications, there are
3 steps that a website must follow. First, the website must explicitly
ask for user permission to show a notification. Second, the website
can then subscribe a user to a push subscription server, i.e., the
Firebase Cloud Messaging (FCM) managed by Google. Third, if
the subscription server permits the subscription request, the push
credentials, including the endpoint working in place of the address
of a subscribed user, will be returned to the website. The website
can use the credentials to send push messages to the subscribed
user. In the case that the website use a third-party push provider
(e.g., OneSignal), these three steps are usually handled by the third-
party. Normally, the website developers only need to embedded the
third-party script and access the third-party web portal to manage
subscribed users.

Nevertheless, we observe that it is possible for attackers to hi-
jack the push subscription to leverage a benign service worker.
Corresponding to the second step, any script can initiate the sub-
scription and unsubscribing processes. Typically, a script can call
the subscribe API, which accepts an optional parameter (applica-
tionServerKey). When specified, the applicationServerKey can act as
a means to identify the sender. However, there is no limitation to
which key is allowed for the website’s push subscription. Addition-
ally, unsubscribing a user can also be done by any script. As a result,
attackers can freely call the subscribe API using their own key to
hijack any legitimate subscription. Because it is the service worker
who handles push notifications, attackers can use the hijacked push
subscription to potentially leverage the benign service worker.

After attackers successfully hijack the push subscription, they
can utilize it to track user locations. We observe that third-party
push providers normally offer the demographic of users and location-
triggered push messages to their customers. Such features, when
used legitimately, can help improve the marketing scheme of the
deploying websites. However, attackers can similarly leverage these
features to compromise a user’s location. For instance, location-
triggered messages can infer user locations, which can be as precise
as in meters. Some push providers can also report when a user last
visits the website that the user is subscribed to. Such information
can be used to infer the victim’s online behaviors, which can poten-
tially reveal the victim’s daily routine. Figure 3 demonstrates what

315

The Service Worker Hiding in Your Browser:
The Next Web Attack Target? RAID ’21, October 6–8, 2021, San Sebastian, Spain

kind of information is possibly available to attackers if the push
subscription is hijacked. Therefore, attackers may not necessarily
need to re-implement these stalkerware1-like features and simply
leverage a benign service worker that already implements them.We
further discuss how attackers can leverage this feature in practice
in Section 5.2.

5 REAL-WORLD CASE STUDIES
In this section, we demonstrate how attackers can utilize the attack
channels to leverage a benign service worker in practice using real-
world case studies of appified websites. For the IndexedDB channel,
we discuss a website that performs inadequate security checks for
an IDB entry used inside a sensitive function inside the service
worker that can allow attackers to compromise the service worker.
For the push notification channel, we discuss a third-party push
provider that lowers the requirements for attackers to utilize this
channel to track user locations.

5.1 Leveraging IndexedDB
In this case study we show a real-world website that we found using
IndexedDB inside the SW context unsafely. We show a simplified
and anonymized code snippet of this website in Listing 1. The web-
site initially stores a configuration variable inside the IndexedDB.
Then its service worker will read the configuration and process it.
As shown at lines (1-5), the service worker opens an IDB instance,
fetches an entry called data, and obtains the config variable from
the database. Next, at lines (6-8) the service worker reads the url
from the config variable and finally passes it to the importScripts
API at line 12. This results in the service worker importing the
JavaScript file specified by the url variable to its secure context. By
manipulating the url variable through IndexedDB, attackers can
inject an arbitrary code to be executed in the service worker.
1 const request = indexedDB.open('db', 1);
2 request.onsuccess = (event) => {
3 const db = event.target.result;
4 const t = db.transaction (['data '], 'readonly ')
5 const query = t.objectStore('data ').get('config ');
6 query.onsuccess = (event) => {
7 const data = event.target.result;
8 url = data.url;
9 var chk = "^https :\/\/(?:[^.]+\.)? example \.com \/.*$"
10 var regex = new RegExp(chk);
11 if(regex.test(url)) {
12 importScripts(url);
13 ...

Listing 1: An example of a vulnerable service worker

Although this website attempts to sanitize the url variable using
a regular expression at lines (9-11), we find that it is insufficient.
The whole regular expression would match https://example.com/
sw.js or https://sub.example.com/sw.js, but it will not match with
https://malicious.com/.example.com/sw.js. Hence, the attackers
cannot seemingly include another file from a different domain
inside this service worker. Nevertheless, the regular expression can
be bypassed to inject any arbitrary domain that does not belong to
the example.com’s subdomain by taking advantage of URL encoding.
For example, attackers can encode the “.” into “%2E” resulting in
https://malicious%2Ecom/.example.com/sw.js. This URL string will

1Privacy-invasive malicious software or code that tracks and monitors victim’s activi-
ties, which is becoming a worrisome problem [7, 15]

naturally pass the regular expression check, and more importantly,
decode back correctly by the importScripts API allowing attackers to
inject a malicious file from their controlled domain into the service
worker.

Because this vulnerable code is executed before the legitimate
code gets to register event handlers, the attackers can initialize the
fetch event handler first and elevate the initial XSS attack into a kind
of persistent Man-In-The-Middle (MITM) attack. By controlling the
fetch event, which can inspect and modify all requests/responses of
the website, the attackers naturally take full control of the website
persistently until the service worker is replaced. Although the
service worker will be replaced once a new service worker file is
detected, a previous study [16] found that appified websites take
40 days on average to update their service workers. Therefore, the
attackers can potentially leverage this benign service worker for a
considerably long period of time.
1 let p = [Input manipulable by an attacker];
2 let t = decodeURIComponent(p);
3
4 if (new URL(t,location.href).host === location.host) {
5 ...
6 self.importScripts(t),
7 ...
8 }

Listing 2: An example of a robust input sanitization

Using importScripts with (non-static) parameters are not uncom-
mon among appified websites, and robust sanitization is crucial to
ensure the security of service workers. Here, we show another real-
world example that uses importScripts with a sensitive parameter
but with proper sanitization. The code snippet in Listing 2 shows a
shorten and generalized service worker code provided by Akamai,
a Cloud service provider. In this case, the variable p (line 1) holds
a value that is manipulable by an attacker. However, this service
worker reconstructs the input, obtains the origin, and compares the
input origin with its own origin at line 3 before importing the result
at line 5. Therefore, an attacker will not be able to leverage this
service worker to import a cross-origin file. As it can be difficult to
thoroughly check the correctness or completeness of a regular ex-
pression, we recommend developers to use alternative approaches
similar to this example instead.

5.2 Leveraging push subscription
In this example, we demonstrate how attackers can leverage a be-
nign service worker to track user locations easily through the pro-
vided functionalities of third-party push providers. The overview
of the attack is illustrated in Figure 4.

Normally, an appified website can use the primitive pushMan-
ager.subscribe API to register for push notifications. However, in
practice, a large number of appified websites utilizes a third-party
push library to handle push messages. As a result, we choose the
most popular (based on our measurement) third-party push library,
OneSignal, as our case study. The generalized code snippet of our
appified website, which we create as a proof-of-concept, is shown
in Listing 3.

OneSignal (and generally any push libraries) follows a similar
push subscription process with their own abstractions. At lines
(1-12), our website subscribes a visitor through the init function,
specifying the appId that works in place of the applicationServerKey.

316

https://example.com/sw.js
https://example.com/sw.js
https://sub.example.com/sw.js
https://malicious.com/.example.com/sw.js
https://malicious%2Ecom/.example.com/sw.js

RAID ’21, October 6–8, 2021, San Sebastian, Spain Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, Yangyong Zhang, and Guofei Gu

Figure 3: A screenshot from our OneSignal account page illustrating what user information can be made accessible once
subscribed.

unsubscribe()
subscribe(attacker ID)

(latitude, logitude)

SendTag(latitude, longitude)

User A
subscribed to
benign.com

benign.com Service worker

Visits

Push provider

Attacker

1
3

2

User A subscribed to
Attacker

{User A: (latitude, longitude)}

Figure 4: An illustration of how attackers can leverage push subscription to track user locations. Users who subscribe to
legitimate websites with location-triggered notification can be vulnerable. Attackers can re-subscribe the user and persistently
access user location or other information.

The init function will then register a service worker with the URL
search parameter appId set to BENIGN_APP_ID.

To demonstrate how attackers can hijack a push subscription, we
create two OneSignal accounts, a benign account and an attacker ac-
count. We also enable location-triggered notifications as suggested
by OneSignal [8] at lines (16-19). This sendTags function will send a
visitor’s location to OneSignal (if the visitor has previously granted
the location permission). This information can be accessed through
OneSignal account page as shown in Figure 3.

1 <head >
2 <script src=" OneSignalSDK.js" async=""></script >
3 <script >
4 var OneSignal = window.OneSignal || [];
5 OneSignal.push(function () {
6 OneSignal.init({
7 appId: "BENIGN_APP_ID"
8 });
9 OneSignal.registerForPushNotifications ();
10 });
11 </script >
12 </head >
13 <body >
14 <script >
15 // Normal Operations
16 OneSignal.sendTags ({
17 latitude: latitude ,
18 long: longitude
19 });
20 ...
21 // Injected by reflected XSS
22 subscription.unsubscribe ();
23 serviceWorker.unregister ();
24 OneSignal.init({
25 appId: "ATTACKER_APP_ID"
26 });
27 </script >
28 </body >

Listing 3: A generalized code snippet of our proof-of-
concept website demonstrating how attackers can hijack
OneSignal subscription and track user’s location.

Then at lines (22-26), we assume that the code is injected through
an XSS attack. First, the code unsubscribes us from the benign ac-
count. Second, it un-registers the current service worker, which is
tied to the benign account. Third, it re-subscribes through the init
API with the attacker account’s appId, which will automatically
register a new service worker (but of the same JS file) tying to the
attacker account. These steps (though produce some errors/warn-
ings to our console) allow the attacker account to replace the push
subscription from the benign account. As OneSignal provides all
the implementations and also an easy-to-use web portal to access
the subscribed user information, the attackers only need to run a
few lines of code inside the document context to easily track victim
locations.

When we navigate through other pages of our test website or
close the web browser, we find that we are still subscribed to the
attacker account. This is because a service worker will only get
replaced/reinstall when a different service worker file is detected
or the (un)register API is deliberately invoked. As the attacker-
bound service worker uses the same legitimate file (but with a
different appID as a URL parameter), the service worker will survive
until a web page or the victim specifically requests the browser to
reinstall/remove it.

Note that the steps from lines (22-26) are tested to work on OneS-
ignal, but the problem does not tie to OneSignal’s implementation.
The outcome would have been the same had we use a different li-
brary or even using the native APIs, albeit the steps may be slightly
different. This is because the underlying problem is with the push
protocol not having any mechanism to check a list of allowed ap-
plicationServerKey. In the case that the target website do not use a
third-party push provider, the attackers may have to implement the
back-end server to handle push subscriptions and an alternative
function to track geo-location instead. While this can increase the

317

The Service Worker Hiding in Your Browser:
The Next Web Attack Target? RAID ’21, October 6–8, 2021, San Sebastian, Spain

attack requirements, it does not completely repel persistent attack-
ers. Nonetheless, we have notified OneSignal and are in contact
with their developers regarding this issue.

This case study demonstrates how attackers can leverage a be-
nign service worker (implemented by OneSignal in this case), in-
stead of starting their own malicious service worker. The attackers
simply re-subscribe the victim using their push account to utilize
the location-triggered notification feature to track the victim. We
find that a number of push providers are starting to advertise simi-
lar features to improve user experience [6, 11] and expect that such
features will be more common in the future. In any case, further
study is required to understand how many users would grant the
permission for location-triggered notifications. We leave this direc-
tion to future work. Nevertheless, if attackers can also fully hijack
the service worker (i.e., through the IDB channel), then they can
directly use the compromised service worker to inject the location
tracking code into the document context to persistently track the
victim locations.

6 SECURITY MEASUREMENT
In this section, we present our assessment of the security of ser-
vice workers. First, we discuss how we conduct a measurement
study (Section 6.1). Second, corresponding to our threat model, we
evaluate the prevalence of XSS vulnerabilities in appified websites
(Section 6.2). Third, we assess the prevalence of the IndexedDB
attack channel (Section 6.3). Last, we assess the prevalence of the
push attack channel (Section 6.4). Note that the attacks discussed
in our paper mostly come from design flaws and cannot be directly
fixed by web developers. We have taken appropriate measures with
our best effort to notify those potentially affected parties that could
have the problems alleviated from the web developer side (i.e., IDB
attacks and OneSignal).

6.1 Measurement overview
We developed a measurement tool to conduct a large-scale study on
the popular websites that deploy a service worker. Initially, we use
the data set provided by Chinprutthiwong et al [16], which shows
the Alexa top 7,060 websites that utilize a service worker. These
7,060 websites are the target of our measurement study.

Our tool can be divided into two components. The first compo-
nent contributes to collecting static data from the websites. The goal
of this component is to verify that the website registers a service
worker and to identify the push subscription metadata (i.e., what
third-party library is used). The second component contributes to
analyzing the IndexedDB usage of the website and to identify if
there is any flow from the document context to the SW context. This
component is extended from the Chromium Taint Tracking open
source project developed by Melicher et al [22]. We add two addi-
tional taint sources, IDB Get and Push message, and two additional
taint sinks, IDB Put and importScripts, to the original tool.

6.2 XSS vulnerability in appified websites
Previous works have reported that regular websites do embed vul-
nerable JS libraries that are prone to XSS attacks [19, 24, 28]. Here,
we aim to evaluate whether such a trend also applies to appified
websites. To identify vulnerable JS libraries in appified websites,

Table 1: A table of XSS reports in appified websites.

Report type # of websites # of reports
Unpatched 934 1646
Patched 1636 3550
Onhold 169 251
Total 2739 5447

we use vulnerability reports from OpenBugBounty [10], a public
bug bounty platform that allows security researchers to submit a
bug report to a vulnerable website. As OpenBugBounty contains
all types of vulnerabilities, we filter out other vulnerabilities and
focus on the XSS bug reports.

We query OpenBugBounty for the bug reports of all 7,060 ap-
pified websites. The result is shown in Table 1. The reports are
divided into three categories: unpatched, patched, and onhold. A
report is labeled onhold for 30 days after the initial report, which
also limits access to the detail of the vulnerability to prevent other
attackers from leveraging the vulnerability. The result shows that
there are 934/7,060 (13.23%) appified websites with an unpatched
XSS report.

To verify if the bugs are still applicable, we manually inspect 30
of these reports. We confirm that the reports contain a vulnerable
URL that can be easily followed to attack the vulnerable websites.
Although the number of unpatched reports may be alarming, the
majority of these websites do not provide login sessions or pay-
ment system (i.e., news websites or web blogs). As login credentials
and payment information are the main targets of XSS attackers,
we speculate that the web developers simply ignore the reports
since they believe the cost to fix the bug outweigh the risks. Never-
theless, there are always associated risks even in websites that do
not provide login or payment mechanisms because now websites
can be equipped with a service worker that can provide extended
capabilities for attackers to leverage. As we discussed in Section 5.2,
XSS attackers can still leverage these types of websites for other
purposes such as to track user locations. As more features are imple-
mented into the service worker, this problem can only get worse if
appropriate protections are not implemented correspondingly. We
further discuss the number of XSS-vulnerable websites tied to each
attack channel in their respective subsections, i.e., the IndexedDB
channel in Section 6.3 and the push channel in Section 6.4.

6.3 Prevalence of IDB attack channel
Our measurement tool reported that there are 3,813 (of 7,060) web-
sites with IDB access and 21% (828/3,813) of these websites load an
IDB entry to use inside their service workers. More importantly,
there are 40 information flows that reach a sensitive sink in the SW
context. We find 5 flows reach the importScripts API and 35 flows
reach the setInterval API.

Confirming vulnerabilities.We manually check these 40 sen-
sitive flows and confirm that all 5 flows (corresponding to 5 different
websites) that reach the importScripts API are vulnerable. We find
that these 5 websites save a URL into the IndexedDB, and the cor-
responding IDB entry is read and passed into the importScripts API.
We use Chrome’s DevTools to test that when the URL is modified

318

RAID ’21, October 6–8, 2021, San Sebastian, Spain Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, Yangyong Zhang, and Guofei Gu

Table 2: A list of variable types of IndexedDB entries loaded inside a service worker.

Type # Entries Examples
Bool 63 true/false

Flag 485
persistNotification
emailAuthRequired
isPushEnabled

URL 88
https://www.eazydiner.com/
https://via.batch.com/2.1.0/worker.min.js
Albertonews.com

Push Key 13
dwRH5VdycN4:APA91bEgqyRo0t9R1hW9oqwJAjLk6MUL9QNQ
7fLhMSrXxS0-MWdkZBV3tqIbfMl633itH8bakis3L6HTIOZJ51
o_tAST-ogHg1XJTBHnJvY_E3sNSz0OdJvNEgCfOg2gfya-Ely2p_Mi

ID 306
83AEAB70-31DF-2ADC-98F3-F0F365A753A1
f45438cb19044fd78277994b2231ddea
NY0C-5Skyo1ijcRfgddX_w

Title 11 Discover The Latest Fashion Trends
Numeric 101 2.2, 1.2.0, 224
Email 3 vibethemes@gmail.com

Others 92
America/Chicago
Chrome/77.0.3818.0 Safari/537.36
Sun Dec 22 2019 14:53:47 GMT-0600 (Central Standard Time)

to our own host, we are able to hijack the service worker of these
websites. Note that our test does not actually affect the websites as
the test was done locally, in which we ourselves are the victim. We
further confirm the other 35 sensitive flows regarding the setInter-
val API. Fortunately, these 35 flows are safe due to the tainted data
being numerical and used solely to specify an interval for the API.

To measure the false-negative rate, we manually inspect 60 web-
sites. We randomly select 30 websites from the set of websites that
do not have IDB access based on our tool report. Then we randomly
select another 30 websites from the set of websites that access IDB
but do not contain a sensitive flow. We use Chrome’s DevTool to
interact with these 60 websites and inspect their source code. This
process takes us approximately 15 human hours in total, which
limits us to only perform this evaluation on a handful of websites.
Overall, we find 7 websites from the first set actually access the IDB
but only after we subscribe for push notifications or create a login
account. This limitation is not specific to our tool, and previous
work [22] that requires automated web crawling similarly faced the
code coverage issue. While several techniques were proposed to im-
prove web crawler, efficient and exhaustive web exploration under
time-bound constraint remains a challenge, especially for rich web
applications that require login credentials [23]. Nonetheless, we
do not find any additional sensitive flow that our tool missed from
these 60 websites. Therefore, we estimate that our false-negative
rate is minimal.

Based on the 5 vulnerable websites, we notice the potential prob-
lem with the URL data type used in the IndexedDB. Therefore, we
further investigate 828 websites that load an IDB entry inside their

service worker. We use string-based heuristics to identify whether
the data stored is a URL as summarized in Table 2. For instance,
a string with only numbers and dots is considered numerical, a
true/false string is Boolean, a string with only alphabet is likely
a flag, a string with multiple spaces is textual or title, or a string
with no spaces and special characters except underscore or dash
is likely an ID. On the other hand, the patterns of URL, Push key,
or email are more well-defined. We can use regular expression to
match these data types more narrowly.

We find that there are 88 IDB entries from 88 websites that read
a URL from the IndexedDB to use inside their service workers. We
use our taint tracking tool, which is practically a web browser, to
visit and further interact with each website. We check the taint
information to see if there is any additional taint flow that can
come from an unexplored path in the original analysis and use
the Chrome Devtool to inspect the service worker’s execution.
Fortunately, there is no additional vulnerable website found.

We use OpenBugBounty to query the past records of reported
XSS vulnerabilities on these five websites. We find that one web-
site has an unpatched XSS vulnerability and three websites have
records of XSS vulnerabilities that were patched. Such XSS vulner-
abilities naturally allow XSS attackers to compromise the service
worker through the IDB attack channel. In total, there are 5 appified
websites that we can confirm as vulnerable (in which one is also
exploitable) to the IDB attack channel. We have notified the five
websites regarding the attack, and four of them eventually fixed
the issues.

319

The Service Worker Hiding in Your Browser:
The Next Web Attack Target? RAID ’21, October 6–8, 2021, San Sebastian, Spain

6.4 Prevalence of push attack channel
There are two types of push protocols: legacy and VAPID. First,
the legacy protocol uses gcm_sender_id to identify the sender. The
sender ID is normally shared between users of the same third-party
library, thuswe collect andmeasure themost common gcm_sender_id.
Second, the VAPID protocol uses the applicationServerKey to iden-
tify the sender. However, the key is normally different between
users of the same third-party library. Therefore, we identify the
third-party library by grouping similar JavaScript files together and
manually label them.

Legacy push protocol. Although Google has deprecated the
Google Cloud Messaging (GCM), which utilizes the legacy protocol,
in April 2018, there are still 359 websites supporting the legacy pro-
tocol. Among these websites, there are 4 popular libraries that they
used to handle push notifications. The libraries are Aimtell, Insider,
Feedifly, and Rich as shown in Table 3 (right). The websites that use
these libraries are potentially vulnerable as the same gcm_sender_id
may be shared among all accounts of these public push services,
which attackers can also create an account. In the case of Youtube,
its gcm_sender_id is shared within their own sub-domains, thus
cannot be leveraged by any attackers.

VAPID push protocol.Websites that utilize the VAPID proto-
col are intrinsically vulnerable. Because there is no security policy
that can regulate the allowed key used in the VAPID subscription,
any third-party script can register its own key and easily hijack
the victim website’s push service. From Table 3 (left), the most
popular VAPID push libraries are OneSignal, Izooto, Pushowl, Fire-
base, and Pushly. As a result, we mark these 5 libraries for further
investigation.

Considering push libraries in both the legacy and VAPID proto-
cols, there are 9 public libraries that may be leveraged by attackers.
We further survey these libraries’ account creation process and find
that 5 libraries offer free account registration without requiring
any personal identification as shown in Table 4 (Free-tier). Fur-
thermore, they offer an equivalent feature to the location-triggered
notification in their services (i.e., geo-segmenting). We regard these
libraries as vulnerable as attackers can easily utilize the web inter-
faces of these libraries to track victims.

In total, there are 993 websites that utilize these 5 push libraries.
We use OpenBugBounty [10] to search for websites with an XSS vul-
nerability among these 993 websites. Surprisingly, we find 200/993
websites with an unpatched XSS vulnerability. Attackers can easily
hijack the push subscription of users who visit these websites by
leveraging these XSS vulnerabilities.

We randomly select 40 websites from the 200 vulnerable websites
to further verify how many websites could be used for location
tracking. Because a website often does not ask for user location
unless the user logs in or interact more with the website, we have
to manually inspect this sample of websites and cannot automat-
ically verify all 200 websites. We use our best effort to manually
interact with them to see whether they will ask for the location per-
mission. For example, we try to register an account and subscribe
for push notifications (using Google translate when the website is
non-English). Eventually, there are 14/40 (35%) websites that ask for
location permission. These websites can allow attackers to utilize
the location-triggered APIs to send user locations when the push
subscription is hijacked and users grant the permissions.

Table 3: A list of five most popular VAPID push libraries
(left) and a list of five most common gcm_sender_id (right)
in popular appified websites.

VAPID Count Legacy Count
OneSignal 854 71562645621[Aimtell] 28
Izooto 126 912856755471[Insider] 14
Pushowl 59 343259482357[Feedifly] 9
Firebase 37 402845223712[Youtube] 7
Pushly 34 361246025320[Rich] 4
Total 1110 Total 62

Table 4: A table of the pricing for top 7 push libraries.

Name Free tier Paid tier (per month)
OneSignal 30K (devices) $99 (unlimited)
Izooto - $85/30K (devices)
Pushowl 500 (messages) $19/10K (messages)
Firebase Unlimited -
Pushly 100 (devices) $15 (base) + 0.005/device
Aimtell - $49/10K (devices)
Feedify 10 (message) $25/3K (devices)

To estimate the number of potential victims, we use Similar-
Web [14] to get the number of monthly visits of the 200 vulnerable
websites. We find that there are over 1 billion visits in one month.
According to a report from OneSignal [9], the most popular push
library in our list, around 10% of visitors would subscribe to a push
service, and 5% of subscribed users would interact with a push
message. As subscribing for push notifications can be an indicator
that these users are well-engaged with the websites and may also
grant the location permission, we estimate the number of victims
to be approximately 1.75M users (derived from 1 billion x 10% x 5%
x 35%) per month. Note that this number does not represent the
actual vulnerable users but only an upper bound estimation since
the number of visits counts repeated users, and attackers still have
to launch an XSS attack against these users.

Nonetheless, this estimation only includes the top 5 push libraries
that attackers can easily utilize, and there are more than a thousand
websites that use other libraries or implement their own. These
websites can also be targeted, but they require different steps to
reproduce the same attack based on the detailed implementation of
each push library. As we cannot manually confirm the attack on all
push libraries, we leave these websites out of our estimation.

7 DISCUSSION
7.1 Key observation from IDB attack channel

study.
Although we can only confirm 5 vulnerable websites at this mo-
ment, we observe a worrying trend regarding this attack channel.
We observe that the dynamic configuration of service workers,

320

RAID ’21, October 6–8, 2021, San Sebastian, Spain Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, Yangyong Zhang, and Guofei Gu

which is designed to be more or less static, is the root cause of the
vulnerability.

We notice that the vulnerable websites utilize a third-party script
to handle all of the service worker’s implementation. Thesewebsites
start a simple service worker that does not contain any function-
ality other than importing another third-party script. We refer to
such third-party script as third-party service worker provider or
SW provider in short. We speculate that the vulnerable appified
websites use the IndexedDB to specify the path of the file being
imported because the SW provider encourages them to do so. The
provider likely has several service worker configurations corre-
sponding to different service worker files that fit different types
of customers (i.e., provider.com/sw-conf1.js and provider.com/sw-
conf2.js). Therefore, instead of providing different starting SW files
that import a different static URL to each customer, the providers
use a common (but vulnerable) starting service worker file and let
the customer dynamically choose the configuration through the
IndexedDB.

Based on our further verification on the 88 websites that load
a URL inside a service worker, we notice that the 5 vulnerable
websites are not the only ones following this practice. Fortunately,
the other SW providers have properly sanitized the IDB entry be-
fore passing it to the importScripts API. Once this type of service
becomes more popular, and if SW providers do not take caution
in sanitizing IDB entries (as we show in Section 5.1 that a secu-
rity check could be bypassed), the IndexedDB attack channel can
become more prevalent in the future.

7.2 Key observation from push attack channel
study.

Based on our manual investigation of popular push providers, we
find that major push providers do offer or advertise location-based
features. For example, subscriber demographic can help provide the
statistics needed to improve the business campaign, and location-
triggered notifications can increase subscriber engagement espe-
cially for limited time/location events. Nevertheless, we only see
such features currently implemented in a relatively small fraction
of appified websites (i.e., 14/40 websites). As location-based fea-
tures are widely used in other domains (i.e., for marketing and
advertising) [2, 3], we speculate that the same trend will follow
push notification and the number of appified websites utilizing
such features will increase in the future.

Interestingly, we find that a large number of websites that we
manually investigate currently use push messages abusively instead
(i.e., to promote phishing messages or illegal services). Although
attackers in our threat model can also hijack push subscriptions
from legitimate websites to use push messages abusively, we do not
consider this direction in this work. This is mainly because abusive
messages will likely make users unsubscribe, causing attackers to
lose control of the hijacked subscription. Nonetheless, as Chrome
(starting from version 80) has started blocking push notification
permission by default (instead of the "ask by default") for some
users or websites, we believe that this kind of problem may be
rather pervasive. Therefore, this problem may be a worthwhile
research direction for future work.

Additionally, we observe that some push providers implement
some forms of protection against push hijacking attacks (albeit
it may be coincidental and a by-product from the API designs).
For example, OneSignal prevents its subscribe API from being in-
voked twice. This should prevent attackers in our threat model
from re-subscribing using the attacker account. However, by re-
moving the service worker, we observe that the subscribe API can
be invoked again, even though it produces some error/warning
messages. Therefore, such client-side checks may not be enough to
prevent this kind of attack and server-side checks may be a more
reliable mitigation method.

7.3 Possible mitigation/defense
IndexedDB. To prevent attackers from utilizing the IndexedDB
against the service worker, the most effective method is to sani-
tize the IndexedDB entries before using inside a sensitive function.
However, it is extremely difficult to perfectly sanitize all inputs,
which is why XSS attacks are still prevalent nowadays. Therefore,
for a long term solution, we suggest an alternative method to initial-
ize the service worker. For instance, a new type of cookie, SWOnly
(Service-worker-only) cookie, that only allows access exclusively
in a service worker can potentially mitigate the attack through
the IndexedDB. Unlike the HTTPOnly cookies, which completely
disallow script access, the SWOnly cookies would simply disallow
script access from the document context (or normal web workers).
We observe that the attacks against service workers usually occur
during the installation phase, which still allows attacker to add
sensitive event listeners (i.e., FetchEvent). By initializing the service
worker through SWOnly cookies instead of the IndexedDB, attack-
ers will not have a way to manipulate the internal SW variables
during the installation phase anymore.

Originally, the service worker was designed to not need the
cookie access. However, such design was soon proven wrong, and
the Cookie Store API [5], which allows cookie access in the service
worker, is under development to satisfy the needs from the devel-
oper community. Therefore, we expect that a mechanism like the
SWOnly cookie may not be too far fetched in the future.

Another improvement that can help enhance the security of ser-
vice workers is to provide a dedicated storage for service workers.
Currently, service workers have to use the IndexedDB, which is
shared between different contexts of the same origin. While this is
useful for sharing data, especially for web workers that may need
to sync parallel computation results, it limits service workers from
storing sensitive data as untrusted scripts from a different context
can freely access the IndexedDB. Although the SW context is iso-
lated, the IndexedDB can be a weak link that invalidates the context
isolation. In the future, it is possible that service workers may be
used for a wider range of applications and require sensitive data to
be stored locally, especially to still support offline usage. Therefore,
it may be crucial for service workers to have an additional dedicated
storage.

While we cannot provide a dedicated storage for service workers
as a solution that can be easily deployed, we try to implement a pro-
totype in Chromium to understand the feasibility and side effects
of this improvement on web browsers. To this end, we manually
inspect the source code of Chromium and find that the existing

321

The Service Worker Hiding in Your Browser:
The Next Web Attack Target? RAID ’21, October 6–8, 2021, San Sebastian, Spain

Table 5: A table of execution overhead occurred in the defense prototypes. In each entry, the first number represents the stock
version execution time, and the second number (in parenthesis) shows the additional overhead of our implementation (taken
as an average across 10 testing runs).

Average (ms) Min (Ms) Max (ms) Median (ms)
Push[Subscribe] 156 (+40) 141 (+22) 185 (+46) 154 (+35)
IDB[Open New] 36 (+8) 30 (+10) 47 (+4) 36 (+8)
IDB[Open Existed] 2 (+7) 2 (+4) 2.5 (+12) 2.3 (+6.8)
IDB[Store] 0.5 (+2.5) 0.4 (+1.1) 1.1 (+4.6) 0.5 (+1.8)
IDB[Read] 0.2 (+0.4) 0.1 (+0.3) 0.8 (+0.9) 0.2 (+0.4)

IndexedDB API can be easily extended to provide a dedicated stor-
age for service workers. We create another copy of an IDB Factory
(back-end of the IndexedDB API). We link this copy with a new API
that can only be accessed from the SW context. We name this API
as privateIDB. This modification to Chromium requires less than 1K
LoC to get a working version of the new API. Note that we only test
the new API on basic usages in which it can provide the isolation
without crashing. As our implementation is a proof-of-concept, the
actual implementation may require more changes to the source
code and more intensive testing.

To calculate the overhead of the new dedicated storage, we com-
pare the modified Chromium with a baseline version. Specifically,
we visit our website that simply open an IndexedDB and execute
the privateIDB API (i.e., open, read, write). We record the run time
of each API call and take the average between ten runs. Then, we
repeat the same tasks using the baseline Chromium to execute the
original IndexedDB API. Table 5 rows (2-4) show the overhead in-
curred by this modification. The first number in each cell refers to
the baseline average run time, and the number in the parenthesis
refers to the added time using the modified Chromium. Based on
these numbers from our crude prototype, we believe that providing
a dedicated storage for service workers is feasible. However, fur-
ther optimization may be needed and planned out by the browser
developer community to better provide a robust solution in a larger
scale.

Push subscription. To prevent any script from using an arbi-
trary key for the subscription, one possible solution is to allow a
website to specify allowed keys that can be used to subscribe for
push notifications. For instance, web browsers can reserve a Man-
ifest entry (i.e., Allowed-Application-Server-Keys), which contains
a list of allowed keys. Then, when the subscribe API is used, the
browsers can check if the specified key is allowed in the Manifest
entry. However, a similar suggestion was raised in the developer
community [4], but it was rejected due to possible usability is-
sues. Nevertheless, given that push providers start to incorporate
location-based message as a new standard, which can be utilized
by attackers to track user locations, we believe the benefit is worth
the adoption cost of this improvement.

As a proof of concept, we also implement a prototype for this
improvement in Chromium. The changes we make to Chromium
are no more than a few hundred lines of code, and we manually
verify that it can successfully prevent a random key from being
used without crashing. We repeat a similar evaluation (done with
the privateIDB), and the overhead is shown in the first row of Table

5. Although the push subscribe API is rarely called and the overhead
may not have a significant impact on a website, we acknowledge
that such changes may introduce more complications on other as-
pects. Regardless, we urge the developer community to re-evaluate
the push notification APIs given that service workers can enable
new ways for attackers to utilize hijacked push subscription as
discussed in Section 5.2.

Another possible method that push providers may employ to
mitigate push hijacking is to check when two accounts are tied to
the same website. During our manual investigation, we observe
that push providers will ask for the website URL that wants to
provide push notifications, while creating a new project (or app).
However, as discussed in Section 5.2, we are able to make two
separate accounts (a benign and an attacker account) link to the
same website. By preventing another account from linking it to
a website that is currently tied to another account, attackers will
not be able to easily utilize the push providers anymore. Although
this only prevents attackers from utilizing the push providers, it
forces the attackers to use the native API such that the attackers
have to implement the back-end push server by themselves. These
extra steps can potentially chase away attackers due to the gain
is not worth the extra effort. We suggest push providers consider
this method in addition to any existing client-side checks to further
enhance the defense against future attacks.

8 CONCLUSION
In this work, we examined the communication channels of ser-
vice workers. We discovered two attack channels, namely, the In-
dexedDB and push notification that attackers can use to leverage a
benign service worker. To measure the impacts of these attack chan-
nels, we conducted an analysis on 7,060 popular appified websites.
Our findings showed that approximately 1.75M users per month
can have their locations tracked by an attacker who leverages be-
nign service workers of popular websites. As more websites start
adopting service workers without considering potential risks, we
believe this problem can worsen. Therefore, we discussed our key
observations and possible defense solutions to help mitigate this
problem from growing in the future.

ACKNOWLEDGMENTS
This material is based upon work supported by the NSF/VMware
Partnership on Software Defined Infrastructure as a Foundation
for Clean-Slate Computing Security (SDI-CSCS) program under
Award Title “S2OS: Enabling Infrastructure-Wide Programmable

322

RAID ’21, October 6–8, 2021, San Sebastian, Spain Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, Yangyong Zhang, and Guofei Gu

Security with SDI” and No. 1700544. It is also supported in part
by ONR Grant No. N00014-20-1-2734. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of NSF
and ONR.

REFERENCES
[1] [n.d.]. Android Intent. https://developer.android.com/reference/android/

content/Intent.
[2] [n.d.]. AWS Location-based Marketing Report 2018. https:

//s3.amazonaws.com/factual-content/marketing/downloads/
LocationBasedMarketingReportFactual.pdf.

[3] [n.d.]. AWS Location-based Marketing Report 2019. https://s3.amazonaws.com/
factual-content/marketing/downloads/Factual-2019-Location-Based-Market-
Report.pdf.

[4] [n.d.]. Chromium Push Issue. https://bugs.chromium.org/p/chromium/issues/
detail?id=803106.

[5] [n.d.]. Cookie Store API. https://wicg.github.io/cookie-store/.
[6] [n.d.]. Geofencing on push notification. https://retailtouchpoints.com/features/

executive-viewpoints/geofencing-and-mobile-push-notifications-a-match-
made-in-customer-engagement-heaven.

[7] [n.d.]. Kaspersky Report on Stalkerware. https://www.kaspersky.com/about/
press-releases/2019could-someone-be-spying-on-you-through-your-phone.

[8] [n.d.]. Location-triggered notification. https://documentation.onesignal.com/
docs/location-triggered-event#section-web-setup.

[9] [n.d.]. OneSignal Report. https://onesignal.com/blog/increase-opt-in-rates-for-
push-notifications/.

[10] [n.d.]. OpenBugBounty. https://openbugbounty.org/.
[11] [n.d.]. Pushwoosh geo-based notification. https://www.pushwoosh.com/blog/

geo-based-push-notifications/.
[12] [n.d.]. PWA Checklist. https://developers.google.com/web/progressive-web-

apps/checklist.
[13] [n.d.]. Shadow Worker. https://shadow-workers.github.io/.
[14] [n.d.]. SimilarWeb. https://www.similarweb.com//.
[15] [n.d.]. Stalkerware. https://www.cyberscoop.com/stalkerware-pandemic-

coronavirus-domestic-violence/.
[16] Phakpoom Chinprutthiwong, Raj Vardhan, GuangLiang Yang, and Guofei Gu.

2020. Security Study of Service Worker Cross-Site Scripting.. In Annual Computer
Security Applications Conference (Austin, USA) (ACSAC ’20). Association for
Computing Machinery, New York, NY, USA, 643–654. https://doi.org/10.1145/
3427228.3427290

[17] Chong Guan, Kun Sun, Zhan Wang, and Wen Tao Zhu. 2016. Privacy Breach
by Exploiting postMessage in HTML5: Identification, Evaluation, and Coun-
termeasure. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3,
2016, Xiaofeng Chen, XiaoFeng Wang, and Xinyi Huang (Eds.). ACM, 629–640.
https://doi.org/10.1145/2897845.2897901

[18] Soroush Karami, Panagiotis Ilia, and Jason Polakis. 2021. Awakening the Web’s
Sleeper Agents: Misusing Service Workers for Privacy Leakage. In NDSS.

[19] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In 24th Annual Network and
Distributed System Security Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017. The Internet Society.

[20] Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. Pride
and Prejudice in ProgressiveWeb Apps: Abusing Native App-like Features inWeb
Applications. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (Toronto, Canada) (CCS ’18). ACM, New York, NY,
USA, 1731–1746. https://doi.org/10.1145/3243734.3243867

[21] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 Million Flows Later:
Large-Scale Detection of DOM-Based XSS. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (Berlin, Germany) (CCS
’13). Association for Computing Machinery, New York, NY, USA, 1193–1204.
https://doi.org/10.1145/2508859.2516703

[22] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The Internet Society.

[23] Seyed M Mirtaheri, Mustafa Emre Dinçktürk, Salman Hooshmand, Gregor V
Bochmann, Guy-Vincent Jourdan, and Iosif Viorel Onut. 2014. A brief history of
web crawlers. arXiv preprint arXiv:1405.0749 (2014).

[24] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In the ACMConference on Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, Ting Yu, George Danezis, and Virgil D. Gligor (Eds.).
ACM, 736–747. https://doi.org/10.1145/2382196.2382274

[25] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos P.
Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis. 2019. Master of Web Puppets:
Abusing Web Browsers for Persistent and Stealthy Computation. In 26th An-
nual Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet Society.

[26] Sooel Son and Vitaly Shmatikov. 2013. The Postman Always Rings Twice: Attack-
ing and Defending postMessage in HTML5 Websites. In 20th Annual Network
and Distributed System Security Symposium, NDSS 2013, San Diego, California,
USA, February 24-27, 2013. The Internet Society.

[27] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t
Trust The Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site
Scripting in the Wild. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The
Internet Society.

[28] Ben Stock, Martin Johns, Marius Steffens, andMichael Backes. 2017. How theWeb
Tangled Itself: Uncovering the History of Client-Side Web (In)Security. In 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, Au-
gust 16-18, 2017., Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association,
971–987.

[29] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Tatsuya Mori. 2020.
Melting Pot of Origins: Compromising the IntermediaryWeb Services that Rehost
Websites. https://doi.org/10.14722/ndss.2020.24140

323

https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://s3.amazonaws.com/factual-content/marketing/downloads/LocationBasedMarketingReport_Factual.pdf
https://s3.amazonaws.com/factual-content/marketing/downloads/LocationBasedMarketingReport_Factual.pdf
https://s3.amazonaws.com/factual-content/marketing/downloads/LocationBasedMarketingReport_Factual.pdf
https://s3.amazonaws.com/factual-content/marketing/downloads/Factual-2019-Location-Based-Market-Report.pdf
https://s3.amazonaws.com/factual-content/marketing/downloads/Factual-2019-Location-Based-Market-Report.pdf
https://s3.amazonaws.com/factual-content/marketing/downloads/Factual-2019-Location-Based-Market-Report.pdf
https://bugs.chromium.org/p/chromium/issues/detail?id=803106
https://bugs.chromium.org/p/chromium/issues/detail?id=803106
https://wicg.github.io/cookie-store/
https://retailtouchpoints.com/features/executive-viewpoints/geofencing-and-mobile-push-notifications-a-match-made-in-customer-engagement-heaven
https://retailtouchpoints.com/features/executive-viewpoints/geofencing-and-mobile-push-notifications-a-match-made-in-customer-engagement-heaven
https://retailtouchpoints.com/features/executive-viewpoints/geofencing-and-mobile-push-notifications-a-match-made-in-customer-engagement-heaven
https://www.kaspersky.com/about/press-releases/2019_could-someone-be-spying-on-you-through-your-phone
https://www.kaspersky.com/about/press-releases/2019_could-someone-be-spying-on-you-through-your-phone
https://documentation.onesignal.com/docs/location-triggered-event#section-web-setup
https://documentation.onesignal.com/docs/location-triggered-event#section-web-setup
https://onesignal.com/blog/increase-opt-in-rates-for-push-notifications/
https://onesignal.com/blog/increase-opt-in-rates-for-push-notifications/
https://openbugbounty.org/
https://www.pushwoosh.com/blog/geo-based-push-notifications/
https://www.pushwoosh.com/blog/geo-based-push-notifications/
https://developers.google.com/web/progressive-web-apps/checklist
https://developers.google.com/web/progressive-web-apps/checklist
https://shadow-workers.github.io/
https://www.similarweb.com//
https://www.cyberscoop.com/stalkerware-pandemic-coronavirus-domestic-violence/
https://www.cyberscoop.com/stalkerware-pandemic-coronavirus-domestic-violence/
https://doi.org/10.1145/3427228.3427290
https://doi.org/10.1145/3427228.3427290
https://doi.org/10.1145/2897845.2897901
https://doi.org/10.1145/3243734.3243867
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.14722/ndss.2020.24140

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Appified web
	2.2 Existing web attacks

	3 Threat model
	4 Attack channels
	4.1 postMessage
	4.2 Cache
	4.3 IndexedDB
	4.4 Push message

	5 Real-world case studies
	5.1 Leveraging IndexedDB
	5.2 Leveraging push subscription

	6 Security measurement
	6.1 Measurement overview
	6.2 XSS vulnerability in appified websites
	6.3 Prevalence of IDB attack channel
	6.4 Prevalence of push attack channel

	7 Discussion
	7.1 Key observation from IDB attack channel study.
	7.2 Key observation from push attack channel study.
	7.3 Possible mitigation/defense

	8 Conclusion
	Acknowledgments
	References

