
SWAPP: A New Programmable Playground for Web Application Security

Phakpoom Chinprutthiwong
SUCCESS Lab

Texas A&M University

Jianwei Huang
SUCCESS Lab

Texas A&M University

Guofei Gu
SUCCESS Lab

Texas A&M University

Abstract
Client-side web attacks are one of the major battlefields for
cybercriminals today. To mitigate such attacks, researchers
have proposed numerous defenses that can be deployed on a
server or client. Server-side defenses can be easily deployed
and modified by web developers, but it lacks the context of
client-side attacks such as DOM-XSS attacks. On the other
hand, client-side defenses, especially in the form of modi-
fied browsers or browser extensions, require constant vendor
support or user involvement to be up to date.

In this work, we explore the feasibility of using a new ex-
ecution context, the service worker context, as a platform
for web security defense development that is programmable,
browser agnostic, and runs at the client side without user
involvement. To this end, we propose and develop SWAPP
(Service Worker APplication Platform), a framework for im-
plementing security mechanisms inside a service worker. As
the service worker is supported by most browsers, our frame-
work is compatible with most clients. Furthermore, SWAPP
is designed to enable the extensibility and programmability of
the apps. We demonstrate the versatility of SWAPP by imple-
menting various apps that can mitigate web attacks including
a recent side-channel attack targeting websites that deploy
a service worker. SWAPP allows websites to offload a part
of the security tasks from the server to the client and also
enables the possibility to deploy or retrofit emerging security
features/prototypes before they are officially supported by
browsers. Finally, we evaluate the performance overhead of
our framework and show that deploying defenses on a service
worker is a feasible option.

1 Introduction

Ever since the introduction of the Internet, cybersecurity
threats have always been relentless, especially regarding
client-side web attacks. For example, one of the most preva-
lent attacks, Cross-site scripting (XSS), costs more than $4M
a year in bug bounty rewards [11]. In response to new at-
tacks, researchers have proposed many defense/detection

mechanisms that require web browser modification (browser-
centric) [34,38,39], manual installation, i.e., as browser exten-
sions (user-centric) [13, 15, 43], or server-side modifications
(server-centric) [17, 42]. While each of the methods has been
proven reasonably effective in its rights, there are correspond-
ing limitations based on where the mechanisms are mainly
deployed.

For browser-centric defenses, generally, browser developers
already put much effort into providing the most secure envi-
ronment to run a website. Nevertheless, a slight inconsistency
between different browser vendors or versions can create a
gap that allows attackers to compromise the users. This is
because there is usually a time gap for a proposed defense to
be officially supported by different browsers and widely de-
ployed. Any outdated client is still at the risk of being compro-
mised. Additionally, proposed prototypes of browser-centric
defenses such as BEEP [31] usually require browser modi-
fications. It is not feasible for such prototypes to be widely
adopted/deployed without constant support from browser ven-
dors. Even the proposal of Content-Security-Policy took two
years before the W3C published the first standard [49].

In the case of user-centric approaches, users are mostly as-
sumed to discover and deploy additional security mechanisms
(i.e., browser extensions) by themselves. Unfortunately, only
a small amount of users are aware of the latest security risks
and deploy the defense mechanisms. As studied by previous
works [41], some users are unaware of commercial security
tools such as password managers. Some users even ignore
security cues and warnings presented by browsers in favor
of convenience [24]. Therefore, it is imperative for web de-
velopers to be the active party in protecting their users from
client-side attacks.

For web developers to mitigate client-side attacks using
server-centric approaches, they can deploy a defense mecha-
nism on the server. For instance, Snort and XSSDS [17, 32]
can be used to set up a server to detect attacks. Nevertheless,
server-side defenses lack the context of client-side attacks.
For instance, DOM-XSS attacks can include the payload after
the URL segment (“#"), which does not get sent to the web-

server. Add-on XSS [26] also executes JavaScript directly in
the victim’s address bar.

To mitigate the aforementioned limitations, a client-side
framework for security functionalities is required. There are
three goals that we want to realize with this platform.

• (G1) Adoptability. We want to provide browser-
agnostic security functionalities that can be quickly
adopted by web developers with minimal changes to
the legacy code and without user involvement and con-
tinuous support from browser vendors.

• (G2) Compatibility. We want to provide a unified en-
vironment for different functionalities, including non-
security libraries such as Workbox [19] (for cache man-
agement), to be compatible and run coherently in the
same environment.

• (G3) Fast prototyping. We want to provide the extensi-
bility and programmability with the platform for devel-
opers to implement security apps against existing and
future attacks.

In this paper, we introduce SWAPP (Service Worker
APplication Platform), a new development framework for
developing security prototypes and applications. SWAPP is a
generalized platform that can be used for any website or in
an enterprise setting accessible from specific networks such
as business applications. To achieve the first goal, we imple-
ment SWAPP to be deployed inside a service worker, which
has been supported by all mainstream web browsers [16].
Nonetheless, it is non-trivial to provide a secure environment
for apps to run as parts of SWAPP. While the service worker
is designed with security as a priority, existing works [28, 29]
show that it can still be compromised. In consequence, we
harden service worker APIs that can be leveraged as an attack
vector and systematically evaluate the security of SWAPP
against possible attacks (Section 4.3).

For the second goal, the heterogeneity of apps running in-
side SWAPP can be a problem. As we envision SWAPP to be
a platform for future security prototype development, SWAPP
needs to handle different apps (including legacy ones like
Workbox) that try to handle the same resource coherently.
However, the service worker is designed to work homoge-
neously. Because it runs asynchronously, each key resource
is provided as an event that can only be handled by a single
event listener. As a result, only one party has a monopoly on
each type of resource, i.e., only Google’s Workbox can handle
the fetch event. To address this issue, SWAPP promotes a new
sub-event queuing system by extending the original event
handling mechanism. SWAPP will generate corresponding
sub-events from the original event to allow different apps
to sequentially handle a copy of the original event based on
the app priority levels. The results will then be combined by
SWAPP. This allows multiple security apps to run cohesively
without any conflicts.

Allowing fast prototyping of apps through SWAPP is our

third goal. To this end, we provide four interfaces based on the
most crucial functionalities: network manipulation, document
context access, secure communication, and secure storage. We
develop several example security apps to show that SWAPP
can be used to implement security apps against various types
of attacks, including a recent side-channel attack [33] target-
ing websites with a service worker (Section 5).

Finally, we evaluate the overhead of SWAPP using two
popular open-source web applications, WordPress and ph-
pBB, which can integrate SWAPP by modifying a few lines
of original code. The results show that the core of SWAPP
(without any apps running) incurs 40ms (15.8%) additional
home page load time to a vanilla WordPress and 58.8ms
(17%) to a vanilla phpBB. With four apps running (Workbox,
Cache Guard, Autofill Guard, and DOM Guard), SWAPP in-
curs 138ms (55%) and 225ms (65.2%) to a vanilla WordPress
and phpBB, respectively. Note that for the purpose of eval-
uation, we enable the four apps for all types of requests. In
practice, the developers can configure the apps to selectively
activate them for certain pages or types of resources. This
could help reduce the overhead of SWAPP and its apps. For
instance, we find that the largest file (a font) requested by ph-
pBB alone requires SWAPP 20ms to parse it. Furthermore, the
measurement was conducted in a local environment, and the
calculations do not consider the network delay. The network
latency depends on several factors, but Google’s DevTools
would add 300-500ms when the Fast3G setting is applied in
our testing environment. Considering an actual user experi-
ence with a 400ms network delay, the overhead of SWAPP
would be 12% for WordPress without apps and 21.2% with
four apps. Similarly, the overhead would be 10.3% for phpBB
without apps and 30.2% with four apps. Therefore, we believe
a service worker can be a feasible option to deploy client-side
defenses in the future.

Our main contributions are as follows:

• We propose and implement SWAPP, a new framework
for developing security mechanisms inside a service
worker. The source code of SWAPP and its apps that
we implement are accessible1. (Section 4)

• We implement security apps using SWAPP to demon-
strate the practicality of the new approach. The devel-
oped apps can be easily extended/exported and deployed
to mitigate several types of web attacks. (Section 5)

• We evaluate the overhead of SWAPP using two open-
source applications (Wordpress and phpBB). The result
shows that SWAPP incurs 40ms (15.8%) and 58.8ms
(17%) additional page load time to the base Wordpress
and phpBB respectively. (Section 6)

1https://github.com/successlab/swapp

Table 1: A List of Service Worker Events.

Event Dispatch Condition

install A service worker is installed
activate A service worker is activated
fetch A network request is issued
push Receive a notification
notificationclick A notification is click
notificationclose A notification is closed
sync Network is available
canmakepayment A payment request can be handled
paymentrequest A payment is requested
message Receive a postMessage
messageerror Cannot receive a postMessage

2 Background and Motivation

In this section, we first provide the background on what is a
service worker and how it works inside a website. Then, we
discuss the limitations of existing web defenses. Finally, we
explain why a service worker can become a new playground
for implementing security mechanisms.

2.1 Service Worker
A service worker is a type of web worker and can be registered
from the document context (i.e., the DOM). Essentially, it is
defined as a JavaScript file that must be hosted on the same
origin as the website (but additional files can be imported
from cross origins). Generally, websites will automatically in-
stall a service worker when users visit their home page. Once
installed, a service worker runs in an isolated execution con-
text, thus scripts from the document context cannot directly
access the service worker. Any information between the ser-
vice worker and the DOM is normally exchanged through the
postMessage API.

The service worker has unique capabilities and operates
asynchronously based on events. For instance, it can act as a
proxy, intercepting a network request, which triggers a fetch
event for the service worker to handle. The service worker
can register an event handler using the addEventListener API.
Table 1 shows the list of service worker events according to
the current W3C specification.

2.2 Existing Defenses and Their Limitations
In this work, we categorize defense techniques into three cat-
egories based on how the proposed defenses can be deployed.

Browser-Centric solutions require browser modifications
to implement a defense mechanism. This type of defense is
the most robust as it runs in the lowest level, the browser
code. Bypassing browser-centric defenses usually implies
the attackers can tamper with the browser’s binary, or the

defense’s design has a critical flaw. Once the proposed defense
is acknowledged in the community, it may be put into the web
standard such as in the case of CSP [49].

Nevertheless, the limitation of browser-centric defenses is
that there is a significant time lag before a proposed solution
becomes official, and until then, it is difficult for the prototype
to be widely deployed. For instance, autofilling hidden fields
in websites was first reported to Chromium as early as January
13th, 2015 [3] with a proof of concept attack shown two years
later [2]. Since then, Chrome has constantly improved its
autofill security such as disabling autofill insecure forms in
Chrome 87 (October 2020) or showing explicit prompts when
autofilling an address in Chrome 95 (October 2021). It could
take years before a security feature is developed, tested, and
deployed. Considering that the web is fast progressive, new
attacks may already evolve into a different variant that is more
resistant to the proposed solution. Even when a new feature
has been supported, not all users will use the latest version of
their browsers, which further delays the deployment of these
features. Therefore, although browser-centric defenses are
robust, they are too rigid for the current web development.
Our proposed framework will allow developers to deploy new
prototypes without being officially integrated into the web
standard to keep up with new attacks.

User-Centric solutions usually take the form of browser
extensions that users can manually install to provide protec-
tion. For instance, Schwarz et al. proposed JSZero [43] to help
prevent micro-architectural side-channel attacks. A more pop-
ular example of a user-centric solution is AdBlocker, which
can prevent unwanted advertisements. Such user-centric de-
fenses are usually easier to deploy than browser-centric so-
lutions, i.e., installing an AdBlock extension only takes a
few clicks. However, it is unclear whether the prototype, de-
veloped as a browser extension, will be widely deployed by
users. For instance, even Adblocker, one of the most common
browser extensions, is reportedly installed in less than 50%
of clients [1]. There is at least another half of the population
that is not used to (or decide not to) utilizing browser exten-
sions. This may also apply to any other user-centric defenses
in general.

Additionally, users are known to be the Achilles heels in
security. As reported by Akhawe et al. [24], users may even
ignore security warnings such as the SSL error. Therefore,
web developers should only treat user-centric solutions as
optional when considering the security of web users. Because
our framework is automatically installed by default along with
the service worker, it is more controllable by web developers
and reachable to the user clients because more than 95% of
running browsers support service workers [16].

Server-Centric solutions are deployed by web developers
at the back-end server, as a proxy, or as parts of the websites.
Depending on where a server-centric defense is deployed,
there can be limitations. For solutions that run in the server
like network firewall [17, 32], they lack the context of the

client at run-time, hence they may not detect an attack that oc-
curs exclusively on the client. Solutions that are deployed as a
proxy also require additional infrastructures, which can incur
additional cost and complexity [27, 54]. On the other hand,
client-side defenses that run in the document context such as
XSS filters [14,22] share the execution context with attackers.
This put them at risk of getting bypassed or manipulated at
run-time [37]. Therefore, they are alternatives proposed in the
form of defensive JS [25]. Nonetheless, defensive JS solutions
may require major changes to the legacy code. Our proposed
solution, on the other hand, does not require many changes to
the legacy code as we later show in Section 6.2.

2.3 A New Playground: SW-Centric Defense
In this work, we propose a different type of server-centric
defense that runs in a service worker, which we call SW-
centric defense for simplicity. Based on the limitations of
existing defenses and our goals (G1-G3), there are three key
reasons why we implement our platform in the service worker.

• Adoptability. Corresponding to the first goal (G1), SW-
centric defenses are easy to deploy and update because a
service worker is automatically installed/updated by web
browsers. Users do not have to make an extra effort to be
protected compared to defenses deployed as a browser
extension. Nonetheless, there are certain requirements
that the clients and servers have to meet in order to utilize
our platform. We evaluate the adoptability in Section 6.1.

• Compatibility. For our second goal (G2), the service
worker runs in a different context than the main page,
thus it minimally affects legacy code in the document
context. Additionally, the service worker runs in an event-
based manner in which a library may occupy an event
handler. If the library utilizes a different set of events
than what our platform requires (i.e., the fetch event),
it will be compatible. In the case that the legacy code
utilizes the same event handler, our proposed platform
can encapsulate them as an app to run alongside other
apps as we will discuss in Section 6.2.

• Locality. Regarding our third goal (G3), SW-centric de-
fenses are deployed at an advantageous location, without
requiring additional infrastructures. The service worker
context provides rich capabilities especially allowing
apps to act as a proxy for the website. With our pro-
vided interfaces for the proposed platform, developers
can quickly implement, adopt, or update new prototypes.
We evaluate the extensibility and programmability of our
platform in Section 6.3.

In order to achieve the three goals, we have to carefully
address several challenges while designing our platform. This
is because the service worker environment is not initially

designed to support multiple apps utilizing the same event
handler. We provide details regarding these challenges in
Section 4.1.

3 Threat Model

In this work, we regard the service worker context as our root
of trust. Therefore, all scripts included as parts of the service
worker and SWAPP apps are benign. We assume the presence
of XSS attackers who may utilize the communication chan-
nels from the document context to compromise our root of
trust, e.g., attacks discussed by our early work [28, 29] and
Steffens et al. [50]. This includes overriding native JS APIs
to execute malicious code inside the protected scopes in the
document context, i.e., prototype pollution attack. We also
assume side-channel attackers who trick a user into visiting
their websites, in which they insert iFrames pointing to the
target websites to measure the page load timing and infer
the user browsing history [33]. Further detail on this type of
attacker will be discussed in Section 5.1.

Because service workers can only partially resist MITM
attackers (e.g., browsers will never replace or update service
workers when there is an SSL error despite the user clicking
through the error to visit the web page), we do not assume
attackers are able to obtain a legitimate certificate. This protec-
tion makes service workers resistant to the evil twin attackers
with a self-signed certificate. Nonetheless, it is still vulnera-
ble to capable MITM attackers who have a legitimate certifi-
cate (e.g., a compromised cloud edge serving first-party web
content or a compromised first-party server). Such capable
attackers will bypass any defenses with the same assumptions
as SWAPP, which implements purely in JavaScript without
browser modifications, browser extensions, or an additional
proxy.

Furthermore, we assume SWAPP has been installed in the
victim’s browser prior to an attack. This is a reasonable as-
sumption in all modern browsers because service workers
are automatically installed on the first normal visit. If the
victim visits the website exclusively in incognito mode (or
other equivalences) before and during an attack, then SWAPP
will not be activated because the incognito mode disables
several features including the service worker. Additionally,
changing the browser profile, device, or clearing the website
data will remove the service worker, thus SWAPP will need
to be reinstalled prior to an attack.

Note that we design SWAPP to be deployed by first-party
developers. Most of our developed apps only need to ac-
cess first-party scripts and exclude third-party content. This
is because when an app needs to intercept cross-origin re-
quests, there may be complications regarding the Cross-
Origin-Resource-Sharing (CORS) protocol. We further dis-
cuss the limitation of SWAPP (and its apps) with CORS mode
in Section 7.

Lastly, attackers in the forms of malicious browser exten-
sions (or malware that can control web browsers) installed in
the clients can remove any installed service worker, thus they
are beyond the scope of our protection. This assumption holds
true for any defenses implemented purely in JavaScript.

4 SWAPP System Design

In this section, we present our framework, SWAPP. First,
we discuss three technical challenges for SWAPP. Then, we
illustrate and elaborate on our design of SWAPP in response
to the challenges. Finally, we show the development interfaces
provided to developers and go through the overall workflow
of our system.

4.1 Technical Challenges
4.1.1 TC1: Homogeneous SW Environment

The service worker context is designed to mostly work ho-
mogeneously. Based on the W3C specification of the service
worker, most crucial service worker events (i.e., fetch) can
only be managed by a single handler, unlike the document
context events such as postMessage, which allows multiple
handlers. Because the fetch event can be crucial to a variety
of apps, this design may prevent multiple apps from shar-
ing the handler. For example, an XSS defense may want to
perform ingress filtering to detect an XSS payload, while a
CSRF defense may need egress filtering to check the HTTP
referer header. The fetch event allows network interception to
perform both ingress and egress filtering. However, the prob-
lem arises when the XSS and CSRF defenses are developed
independently by different groups of developers. This can
cause conflicts, and only one defense may be allowed to run
as the fetch event handler.

As a first step toward providing a unified platform for the
service worker environment, the design of SWAPP must first
accommodate and promote heterogeneity. To this end, we in-
troduce a new event queue for the fetch, activate, and message
event handlers. A Supervisor is assigned for each event to
keep track of which app gets to execute and in which order
(more details will be discussed in Section 4.2.1).

4.1.2 TC2: Limitation of Original SW Events/APIs

While the initial service worker events provide unique capa-
bilities that do not exist in the document context, they are still
rather limited in the granularity to enable the development of
security applications that are rich in diversity. For instance,
the fetch event is dispatched during a network request, but the
network response is treated as the byproduct of the request
instead of having a dedicated event separately. To this end,
SWAPP utilizes the Supervisor to provide a custom event for
apps to handle. The custom event system can improve the

Supervisor

App 1

App 2

App n

...

Register/
Invoke

Handlers

Install

Message Manager

App Instances

Web PageWeb Pages Message Manager

TCB Environment

Code
Blocks

Code
Blocks

Code
Blocks

CL1 CL2---> ---> ...

Custom Event Manager

Event Listener

Service Worker
Context

Document
Context

Browser
Generated

Events

Figure 1: SWAPP Overview Architecture

granularity of the original events especially by decoupling
the request-response pairing from the fetch event into a re-
quest event and a response event (further discussed in Section
4.2.2).

4.1.3 TC3: SWAPP Security Against Attackers

Because SWAPP is designed to act as a centralized con-
troller to protect the website, it is unavoidable that SWAPP
itself will be subjected to web attacks. For instance, our
prior studies [28, 29] have discussed attacks against service
workers using the APIs that can propagate information from
the document context to the service worker such as service-
Worker.register and IndexedDB. Son et al. [47] also dis-
cussed an attack using the postMessage API, which Steffens
et al. [51] later highlighted the prevalence of this attack in
a large scale. While the attack originally targets iFrames, it
is also applicable to service workers. Because there are no
built-in capabilities to reinforce security or accommodate web
developers to utilize these APIs securely, we have to enhance
the security of all channels and APIs that can reach the service
worker. We further discuss how we reinforce SWAPP against
these attack vectors in Section 4.3.

4.2 Overall Design
The components of SWAPP reside in both the service worker
and document context. There are four key components
that make up SWAPP: Supervisor, Custom Event Manager,
Trusted Code Block, and Message Manager.

4.2.1 Supervisor

The Supervisor resides in the service worker context. It is
deployed within an event listener. The main purpose of the Su-

pervisor is to provide a heterogeneous execution environment
inside the service worker (TC1). In our current implemen-
tation, we have put the Supervisor in three events: activate,
message, and fetch. While we do not deploy the Supervisor
in all events, these three events are sufficient to implement
several apps as we later discuss in Section 5. This method
can also be extended to support other events such as push or
future events that are not yet released.

The Supervisor acts like a mediator between an originally
dispatched event and apps. When it receives an original event
(e.g., fetch) from the browser, it creates an event queue for
SWAPP apps to handle. We call events distributed from the
queue to apps as subevents. Each app can register a subevent
handler through the Supervisor, which will manage the exe-
cution order between apps and combine the execution results
before making the final decision regarding the original event.

There are mainly two types of subevents for apps to handle.

• The match subevent tells the apps about the information
of the original event. For example, if the original event
is a fetch event, the information will include the HTTP
headers and body of a request. Note that the available
HTTP headers are still limited by the list of Forbidden
header [9]. The handler of this event should tell SWAPP
whether the app is interested in manipulating the event
by returning a Boolean value.

• The action subevent is dispatched for apps interested
in the original event after the Supervisor receives the
answer from the match event. In general, the handler
of the action event will have access to the final object,
fObject, which is passed as a parameter that must be
returned to be fed to the next handler as a parameter. The
fObject contains a clean copy of the original event and a
dirty version, which other apps may have modified.

For the Supervisor to manage the execution order of each
app and to decide what to do with an event, an app can be
assigned two parameters: execution order value (eOrder) and
decision priority level (pLevel). A lower eOrder implies the
app is ahead in the line and will execute earlier. A higher
pLevel implies the app has a higher priority and can override
the decision. If these parameters are not specified, the Super-
visor will follow the app’s installation order (i.e., the first app
installed executes first and has the highest decision priority).

Furthermore, the possible values for a decision will be
based on the original event. For instance, the decision of a
fetch event can be original (proceed with the original), dirty
(proceed with the modified version), cache (respond with
specified cached content), or drop. The activate event cannot
specify a decision as they are mainly provided for apps to
initialize their variables when the service worker is activated.
For the message event, we wrap it in an additional layer to
provide enhanced security (further discuss in Section 4.2.4).

4.2.2 Custom Event Manager

The Custom Event Manager is closely tied to the Supervi-
sor and can be considered as an extension of the Supervisor.
Its main purposes are to define custom events, manage the
transition between each custom event loop/queue (CL), and
mediate between the Supervisor and apps. These are to pro-
vide more granularity to the original service worker events
(TC2). Currently, we implement the Custom Event Manager
only for the fetch event, but this concept can be extended to
other events as needed.

Primarily, we use the Custom Event Manager to decouple
the fetch event into the request and response custom events.
Specifically, the Custom Event Manager divides the original
fetch event into two stages. The first stage is similar to the
original fetch event, which is triggered upon receiving a net-
work request. However, unlike the original, this event ends
when a decision regarding the request is made, not when a re-
sponse is specified. The second stage starts immediately after
the first stage if the decision of the request custom event is
not to drop. Apps will then be notified to modify the response
accordingly.

4.2.3 TCB Environment

The Trusted Code Block (TCB) Environment is injected into
every web page by the Supervisor inside the fetch event lis-
tener. It is essentially located in the document context to
provide a secure environment for apps that need to execute a
piece of code in the document context. By design, the service
worker cannot directly execute code in the document context.
This leads to both advantages and disadvantages when consid-
ering implementing a defense. The advantage is that attackers,
in the form of malicious scripts injected into the main web
page, cannot directly access the service worker. However, the
opposite is also applied that the service worker may not be
able to enforce certain restrictions to the malicious script be-
fore the malicious operation is already in-flight to the fetch
event. Several proposed defenses and techniques [43] rely on
having trusted code running in the document context.

Similar to how the Supervisor operates, SWAPP allows
app to listen to the TCB’s match and action subevents. When
SWAPP attempts to inject the TCB environment to a web
page, the match event is dispatched. The handler will receive
the web page information (e.g., the URL, HTTP headers, and
the response body) and can decide whether the app wants to
inject any code along with the TCB environment. The code
will then be invoked when the TCB environment has finished
initializing. We further elaborate on how the TCB provides a
secure environment in Section 4.3.1.

4.2.4 Message Manager

The Message Manager runs both inside the message event
listener in the service worker and inside the TCB. It provides

a secure communication channel between the service worker
and document context within SWAPP (more details of its
security are discussed in Section 4.3.2). For an app to send a
message, it can call our internal API, broadcastMsg, which
will send a message to a dedicated message port. This API
accepts two parameters: the message content and the list of
tags. The tags can be used to identify which apps are the
intended recipients. An app can register a tag list along with
a handler with the Message Manager. When the Message
Manager receives a message, it will notify all apps that have
a matching tag and invoke the registered handler.

4.3 SWAPP Security Analysis and Design

SWAPP itself can be the target of attackers (TC3). Here we
elaborate on how we enhance SWAPP against threats from
different attack vectors. Primarily, there are three channels
that attackers in our threat model can leverage against SWAPP:
document context, postMessage, and IndexedDB.

4.3.1 Security of Document Context

Our threat model assumes that attackers can execute malicious
code in the document context. This allows attackers to target
the TCB directly. To this end, SWAPP puts the TCB inside
a Closure and freezes sensitive JS objects used by the core
of SWAPP similar to the method discussed by Schwarz et
al. [43]. Nonetheless, apps may evoke JS APIs that are not
originally frozen inside the TCB, and attackers can manipulate
these objects [45]. For instance, if a SWAPP app registers a
mouse click event listener that will call console.log to print
out some information, attackers can override the log function
to perform malicious tasks such as sending internal SWAPP
messages to manipulate the service worker. Because the TCB
is an anchor for SWAPP in the document context, we need to
ensure that the TCB will not be compromised.

The security of TCB can be considered in two cases. The
first case is the initial execution of the TCB. In this case,
attackers cannot launch an attack nor modify any code. This
is because the scripts in the document context will execute
sequentially. SWAPP can intercept a web page and insert the
initialization script at the topmost of the header (if available)
or body to ensure the TCB is established before other code
runs. Therefore, any attacks in this phase are not a threat.

The second case is after the initial execution of the TCB.
In this case, SWAPP does not know in advance what APIs the
apps will use that need to be frozen. Furthermore, SWAPP
cannot preemptively freeze all JS objects due to possible con-
flicts with existing libraries. Instead, SWAPP has to identify
when there is a code tampering with an object executing in-
side the TCB. A way to check the integrity of a callable object
is to inspect its definition through the toString function. A
native object would return "[Native code]" upon inspecting,
while a modified object would return the code that redefines

it. However, there are many evasion techniques that can trick
the toString function to return "[Native code]".

To avoid the cat and mouse game with the attackers in
the document context entirely, our solution is to pass the
target object to a fresh iFrame before calling the toString
function. With this method, the malicious code that tries to
trick the toString function (including its prototype chain) will
not apply to the iFrame context. This is because the evasion
techniques will tamper with a certain point in a prototype
chain. By sending the object to a fresh iFrame, the object can
be executed without the attacker’s manipulation.

We provide a helper function, checkIntegrity, to help verify
the integrity of the list of given objects. This function will
create a fresh iFrame, go through the list of native API calls
that the app wants to use, pass each API reference to the
iFrame, obtain the object definition, and return the value to the
original context. The returned value will then be hashed for
future comparisons. Because the iFrame is newly created and
destroyed after each use (and the API to manipulate iFrames
will be frozen), attackers will not be able to affect the iFrame.

Now that we obtain the hashed API definition, we can
check if it is malicious. The list of APIs to be checked is
given by the app developers. They can inspect their own code
and give SWAPP the list of hashed benign API definitions
when installing the app. When an unmatched is found for an
API definition, we know that an unexpected (and potentially
malicious) code overrides the API and we alert the app to pre-
vent the code from executing. In this way, we can protect the
TCB while minimizing the effect on other legitimate libraries.

Because the service worker (un)registration APIs are also
accessible in the document context, we must also prevent at-
tackers from removing the service worker, which contains
SWAPP’s core functionalities. To this end, SWAPP disables
the register (and unregister) API entirely. If the website wants
to legitimately execute the register API, then it can send
the Clear-Site-Data HTTP header to remove SWAPP. Once
SWAPP is removed, the APIs will not be overridden, and the
website can invoke the register API again.

We test these enhancements by launching prototype pollu-
tion attacks with multiple bypassing techniques in our exam-
ple website. We find that with a correct list of sensitive APIs
defined, malicious code cannot be executed inside the TCB.

4.3.2 Security of postMessage

Existing works discussed the Postman attack [47], which uti-
lizes the postMessage (PM) to attack a different context such
as iFrames, and its prevalence [51]. The results show that
websites often neglect or perform inadequate origin checks
regarding the message sender, leading to code execution in-
side the targeted context. This type of attacker is especially
potent in our threat model where the service worker is treated
as the root of trust. Therefore, SWAPP’s Message Manager
must provide a mechanism to prevent such attacks by default.

To mitigate against this type of attacker, we enhance and
extend the original PM APIs. In the service worker, multi-
ple PM (also referred to as message event) handlers can be
registered. We register an instance of the handler and de-
ploy a Message Manager inside the service worker (SW-PM).
Correspondingly, the document context also has a Message
Manager deployed (DOC-PM) in the TCB. The message op-
erations within SWAPP are accessed through SWAPP’s dedi-
cated APIs as shown in Table 2.

Intuitively, we provide security in SWAPP’s internal mes-
saging system by limiting the sources of messages from the
document context. When the DOC-PM is instantiated inside
the TCB, it will also use the MessageChannel API to create
communication ports. Then, it will send the port informa-
tion to the SW-PM, who will keep the port information for
records. Further communication will be made using this port.
The SW-PM will reject messages from unauthorized message
channels. As discussed in Section 4.3.1, the ports cannot be
accessed by attackers outside the TCB. With these enhance-
ments, we mostly limit the sender origins of postMessage
communications to only within SWAPP.

To test these enhancements, we try to launch the Postman
attack (in a local environment) by sending post messages to
the service worker. We find that without the apps leaking
the dedicated port or other libraries running inside the ser-
vice worker being vulnerable, attackers will not be able to
successfully contact the service worker.

4.3.3 Security of IndexedDB

Our previous work [29] shows that despite service workers
executing in an isolated context, they can still be compromised
through the IndexedDB. Considering SWAPP apps run inside
the service worker, which only has access to IndexedDB as a
storage space, it is especially crucial to enhance the security of
IndexedDB. This is because apps may need to store sensitive
statistics, state information, or configurations locally.

In order to prevent attackers from utilizing the IndexedDB,
SWAPP provides an isolated storage space dedicated to the
SW context (SW_DB) and to SWAPP (SWAPP_DB). SWAPP
overrides the IndexedDB APIs when initializing the TCB such
that these two database names are restricted. SWAPP_DB is
used internally as parts of SWAPP, and other scripts outside
of the TCB will not be able to access it. The SW_DB is used
specifically in the SW context, and even the TCB will not
have access to it.

We try to launch an attack against SWAPP with these en-
hancements by attempting to access the private IndexedDB.
We find that without apps (un)intentionally leaking the In-
dexedDB’s transaction that opens the private database, attack-
ers will not be able to access the secure storage.

Table 2: A List of Example SWAPP Interfaces.

Category Interface Description

Network
Manipulation

reqMatch Check if a request matches interception criteria
reqAction Perform the modification to a request
reqPriority Specify the priority level of the app to a request
reqOrder Specify the execution order of the app to a request
respMatch Check if a response matches interception criteria
respAction Perform the modification to a response
respPriority Specify the priority level of the app to a response
respOrder Specify the execution order of the app to a response
setDecision Set the decision for a request/response
get/setMeta Get/Set the metadata of a request/response
get/setBody Get/Set the body of a request/response

Document
Context Access

tcbMatch Check if a web page matches injection criteria
tcbAction Perform the modification to the document context
tcbOrder Specify the execution order of the app in the TCB

Secure
Communication

msgLabel Specify message labels of the app’s interest
msgHandler Specify a message handler
broadcastMsg Send a message to all apps

Secure Storage
Management

get Get stored data from secure database
set Save data to secure database
delete Delete data from secure database
createTable Create a new table in secure database
removeTable Remove a table in secure database

4.4 SWAPP Usage and Interface

Considering that both attacks and defenses are evolving, it
could be almost impossible to implement a solution that
can satisfy all types of defenses out-of-the-box. Therefore,
SWAPP aims to provide a framework that abstracts generic
security primitives and enables the extensibility for devel-
opers. Currently, the core of SWAPP provides four types of
primitives2 (with corresponding interfaces shown in Table 2).

• Network Manipulation enables apps to inspect and mod-
ify any network requests and responses in-flight. Such
capability can be leveraged by many types of defenses,
i.e., XSS filter [21, 30], CSRF detection [6], or proxy-
based mechanisms [44, 54].

• Document Context Access allows apps to execute code
securely in the document context. This is crucial to de-
fenses that require code instrumentation to enforce secu-
rity policy at run time in the document context [43].

• Secure Communication provides a secure channel for the
communication between the service worker context and
the document context. As SWAPP spans in both contexts,
an app may have parts of its logic located in different
contexts or want to communicate with another app. This
primitive helps alleviate these tasks for developers.

• Secure Storage Management ensures that data stored by
apps will not be tampered with by unauthorized scripts
from the document context. The only existing reliable
storage provided to service workers is the IndexedDB,
which is also shared with the document context (and can
even be utilized for an XSS attack [50]). Thus, our new
primitives can help restrict such unauthorized access and
ensure attackers will not be able to manipulate app data.

2Primitives and associated interfaces could be extended in future.

High-level functionalities can then be provided or devel-
oped based on these primitives. We demonstrate how these
primitives can be combined to construct a security app in
Section 5.

5 SWAPP App Examples

In this section, we present four example apps to show how
security apps can be constructed using SWAPP interfaces.

5.1 Cache Guard

if(fObj.getDecision() == "cache")
return true;

CG.startTimer(fObj);

reqMatch (fObj)

let ref = fObj.getMetadata().referer;
let refHost = (new URL(ref)).host;
if(!allowedList.includes(refHost))
fObj.setDecision("deny")

if(CG.isDummy(fObj))
delay(CG.avgLoad);

reqApply (fObj)

CG.initialize();

onswactivate

let needDummy = false;

if(fObj.getDecision() != "cache")
CG.stopTimer(fObj);
CG.updateAvgLoad();

if(isWebPage(fObj)) {
needDummy = true;
CG.lastWebPageVisited.startTimer();

} else {
if(CG.lastWebPageVisited.elapsed() < tthresh) {

if(!CG.isValidLoad(fObj)) {
delay(CG.avgLoad);
CG.updateProfile(fObj);
CG.save();

}
} else {

delay(CG.avgLoad);
}

}

return needDummy;

respMatch (fObj)

CG.addDummy(fObj);

respApply (fObj)

Figure 2: Workflow of Cache Guard. The coloring represents
the usage of different groups of SWAPP interfaces (either
as a direct invocation or a function containing the interface).
Green represents a secure storage management interface. Blue
represents the network manipulation interface. For instance,
CG.initialize utilizes our secure storage to load settings and
previous statistics thus is labeled in green.

Karami et al. have recently discussed privacy-invasive at-
tacks on websites utilizing service workers for caching [33].
The attackers lure victims into visiting their website, where
the target web pages (or resources) will be loaded in iFrames,
and the load times are measured to determine whether they are
served through cache. If certain resources are served through
cache, the attackers can infer that the victims have visited
privacy-sensitive pages before. This includes inferring the
victim’s WhatsApp social graph. Such side-channel attacks
(determining cached content to infer the victim’s browsing
history) are common threats for websites that want to utilize
a service worker (or cache in particular) [36]. Note that this
attack can work even when the X-Frame-Options or CSP is
specified on certain browsers such as Firefox. This is because
even when the browser does not show the iFrame content, the
load time can still be measured.

To mitigate against this type of attack, Karami et al. im-
plemented a helper tool for developers, in which the tool will

instrument the fetch handler to check the referer HTTP header.
If the header is not specified in the allowed list, the request will
be dropped. However, this cannot prevent an attack where the
website supports open redirection because the attackers can
essentially forge the referer using the same-origin redirection
page. To illustrate that SWAPP can be used by researchers as
a platform to develop new defense mechanisms, we develop
Cache Guard using SWAPP in response to this attack with
two goals in mind. First, Cache Guard should be easily imple-
mented and distributed by researchers and deployed by web
developers. Second, Cache Guard should further prevent the
attacks even when the website supports open redirection.

In addition to Karami’s proposed defense (checking the
referer header), which we implement using SWAPP in a few
lines of code, we further improve Cache Guard to additionally
protect when the website has open redirection. The final ver-
sion is implemented in 258 LoC, and the overview is shown
in Figure 2. The intuition behind this improvement is to delay
the cached response to make it looks like it is loaded over
the network when necessary. Because the cache is introduced
to reduce load time and provide the offline capability, Cache
Guard cannot simply delay all cached responses. As a result,
we consider two scenarios for delaying cached responses.

First, if the resource being loaded is a web page, Cache
Guard will attach a dummy resource request using the
respAction event (the custom subevent for a response action).
By using the reqAction event (the custom subevent for a re-
quest action), the dummy will be delayed to make the page
load time similar to network loading. Cache Guard keeps the
load time of prior resources to calculate the average network
delay over time. The timer starts in the reqMatch (request
match) event and stops in the respMatch (response match)
event. In this way, users will not experience the delay and at-
tackers cannot accurately determine the cache usage because
the page load time is measured when the page has finished
loading all resources in the page.

Second, if the resource being loaded is not a web page (and
not our dummy resource), Cache Guard will delay it unless
there is a prior web page request that Cache Guard knows
will need the resource (i.e., legitimate resource requests). The
intuition is that non-page requests mostly originate from a
web page. Therefore, Cache Guard will cumulatively build a
resource loading profile for each web page and check when
there is a non-page request. If it does not match a prior profile,
Cache Guard will delay it first before updating the profile.
These are mostly done in the respMatch event.

Because attackers typically rely on measuring the first re-
source load time by adding random URL parameters, our
approach will nullify this type of attack. We evaluate the ef-
fectiveness of Cache Guard by launching the side-channel
attack discussed by Karami et al. We develop a demonstration
website locally (accessible in our Github directory) and use
Chrome’s DevTools to measure the average resource load
time across multiple runs. We use Chrome’s Fast3G throt-

tling network profile to emulate the network delay. We find
that with Cache Guard enabled, the first cached resource load
time is within 10% of the average network load time. Further-
more, subsequent access to the resource is still as fast as the
normal cache load time (within 50% of the average network
load time). Therefore, Cache Guard is effective against this
side-channel attack.

5.2 Autofill Guard

Nowadays, websites provide a login mechanism for users,
usually as a form that users can type in manually or be aut-
ofilled by browsers or external tools. The login credentials
are often a target for attackers, who could steal these sensitive
login credentials from a login form that is automatically filled
by browsers or external tools. For instance, Silver et al. [46]
and Stock et al. [52] show that auto-filled forms are vulnera-
ble to MITM and XSS attacks respectively. In this example,
we propose an alternative defense, called Autofill Guard, that
can protect login forms from XSS attackers. Autofill Guard
can work complementary to and in conjunction with other
existing defense mechanisms.

Autofill Guard mainly provides protection through isolation
(by using iFrames). By putting a form inside an iFrame, which
is isolated from the main context, XSS attackers will not be
able to access the form anymore. Furthermore, to prevent
attackers from creating an invisible form (different from the
legitimate one) and tricking password managers to give them
the credentials, Autofill Guard can also override JavaScript
APIs and disallow form creation. The overview of Autofill
Guard is illustrated in Figure 3.

When a user requests a website, Autofill Guard’s Form De-
tector automatically detects a sensitive form and encapsulates
it inside an iFrame. Then, if the form is submitted, Autofill
Guard’s Mediator will forward the request to the webserver to
log in. Upon receiving the response, Autofill Guard’s Notifier
will notify the TCB to reload the main page. These processes
are done automatically, thus there will be no differences from
the user perspective.

We test the effectiveness of Autofill Guard by constructing
a similar attack discussed by Stock et al. [52], where attackers
inject malicious JavaScript code that tries to read the input of
a login form. We perform the mock attack in a local environ-
ment with Chrome 80 to access the mock website. We verify
that Chrome automatically fills in the login form, but the
malicious script we add cannot access the form information.

It is worth noting that there are two limitations in the cur-
rent Autofill Guard version. First, as Autofill Guard is in-
tended to protect against attacks targeting autofill in static
login forms, it has to disable APIs that can create new forms,
which can possibly introduce false positives (i.e., blocking
legitimate form creation).

Second, the JS code that accompanies the forms would
not be able to access the original page’s DOM. In practice,

reload

ID
Password

Login FormForm Detector

Mediator

Notifier

User Page

Fe
tc

h
M

an
ag

er

Fetch
M

anager

Reloader

Autofill GuardLogin
Page

Login
request

SWAPP

Server Client

Document Context

Login Page

TCB
User
Page

User
Page

Figure 3: Workflow of Autofill Guard

web developers could modify Autofill Guard to include the
necessary JS code along with the iFrame, i.e., to validate the
correctness of the filled values or to handle an onclick event.
However, the JS code would not have direct access to the
main page’s DOM due to the isolation provided by Autofill
Guard. The developers could establish a postMessage channel
between the iFrame and the main page, but this would defeat
the purpose of Autofill Guard. This is because Autofill Guard
is developed to isolate the forms from malicious scripts in
the DOM and establishing such communication could expose
the iFrame to the attackers. In any case, if the forms and the
accompanied JS code do not rely on the main page’s DOM,
they would be compatible with Autofill Guard.

Autofill Guard is developed as a proof of concept to demon-
strate how SWAPP can enable new directions and use cases.
Our implementation of Autofill Guard utilizes iFrames and
the service worker to manage extra requests/responses to al-
low the login to work despite the form being submitted in an
iFrame instead of the main context. We hope this method can
spark new ideas to implement more complicated defenses in
the future.

5.3 Data Guard
HTML resources are used in websites for displaying various
content to users. However, due to the complexity of designing
and implementing access control policies, broken access con-
trol vulnerabilities exist in many websites. For resources that
contain privacy (e.g. URL to a private file on the website or
privileged operations [8] [7]), if an access control vulnerabil-
ity exists and attackers are able to steal the URL, the privacy
could be leaked. To protect such data from being compro-
mised, we designed Data Guard to automatically preserve
the data in a service worker and add them back to HTTP re-
quests according to the context. The overview of Data Guard
is illustrated in Figure 4.

Data Guard will first perform static analysis and find all
predefined data types on the web page. Web developers can
also define their customized data extraction strategies to sup-
port other types of data. To enable the customization in Data
Guard, we provide a template for web developers to define
their own data extraction strategies, as shown in Listing 1. For

Rendering engine
(document context)

HTTP response

HTTP request

SWAPP
Data Guard

Secure
Storage

Headers
URL
Tokens
…Server

Fe
tc

h
M

an
ag

er

Data Extraction

Data Recovery

Fetch
M

anager

HTTP response

HTTP request

Server Client

Figure 4: Workflow of Data Guard

each element identified by Data Guard, we will replace the
sensitive data with a unique string, which will be an SHA-256
hash string generated from the element. The original sensi-
tive data and the corresponding unique string will be stored in
secure storage provided by SWAPP as a key-value pair. When-
ever the unique string is detected in any outgoing message,
Data Guard will replace the string with the original sensitive
data. Currently, Data Guard will replace all URLs in the web
page as a proof of concept. Based on our observation, such
practice will not harm the normal workflow of the websites
we have tested.

With Data Guard, attackers will not be able to send valid
requests to the server with the stolen data since it has been
replaced with unique strings that can only be recognized by
SWAPP in the victim’s browser.

1 ...
2 function dg_init(){
3 ...
4 add_undoc_data_type("data_name", extraction_cb);
5 ...
6 }
7
8 function extraction_cb(body , headers){
9 // define the data extraction strategy here

10 }
11 ...

Listing 1: Data Guard Undocumented Data Extension Tem-
plate

5.4 DOM Guard
Cross-site scripting (XSS) attacks have been one of the most
prevalent web attacks. In recent years, an emerging type of
XSS called DOM-XSS is becoming a severe problem. DOM-
XSS is unique to existing XSS in that it occurs mostly at the
client-side, making server-side solutions ineffective. DOM
Guard, however, can utilize existing techniques such as server-
side firewall and apply it to the client-side through SWAPP.

Our implementation of DOM Guard allows a plug-and-play
strategy where different types of techniques can be switched.
Currently, as proof of concepts, we use a filtering technique
as the detection strategy. To detect DOM-XSS payload from

executing on the client-side, DOM Guard will check the URL
segment of every request for potential payload using an HTTP
encoder [12]. DOM Guard will compare the encoded URL
segment with the original segment to determine a potential
attack. Nonetheless, this can be improved by applying other
existing detection techniques in DOM Guard. For example,
Chaudhary et al. proposed a proxy-based technique to validate
network responses [27]. In this case, DOM Guard can act as
the proxy to lessen the requirement of the technique that needs
a physical proxy to be deployed.

We demonstrate the effectiveness of DOM Guard using
an existing XSS payload [23]. We create a website with a
vulnerable page that will read the value of its URL segment
and directly write it into the DOM. Then, we install SWAPP
with DOM Guard activated. We test to see if the payload is
executed by checking if the alert function is called. After we
have visited the vulnerable page with the given payload list,
we find that the filtering is effective.

As DOM Guard is currently designed to apply existing XSS
detection techniques, it will inherit their limitations. Addition-
ally, techniques that require heavy computation can poten-
tially affect the clients. Nevertheless, the advantage of DOM
Guard is that once a new technique is developed, DOM Guard
can potentially make use of it. DOM Guard as a DOM-XSS
detection app that can easily switch to different techniques/s-
trategies demonstrates the flexibility of SWAPP.

In any case, it is also possible to implement XSS filtering
in the TCB. However, implementing a filter in the document
context may require additional native objects related to the
filtering such as the input sources (e.g., Document.location)
or sinks (e.g., appendChild) to be instrumented. There are
two disadvantages to this approach. First, it could conflict
with legacy code that utilizes these objects due to code instru-
mentation. Second, the instrumented code directly affects the
page’s responsiveness as it introduces delays to users when
interacting with the web page. Implementing the filter inside
the service worker does not have the same disadvantages.

First, the service worker context is separated from the doc-
ument context, thus does not conflict with the legacy code in
the document context. Furthermore, URL filtering is native to
the fetch event in which apps can easily check the outgoing
request whether it contains a suspicious parameter. Instead
of instrumenting several sources and sinks in the document
context, our DOM Guard app requires only a few lines of
code to achieve the same result.

Second, the overhead incurred in the service worker context
affects user experience less because the service worker runs
asynchronously in a different thread. The overhead is added
to an already lengthy network delay and is non-blocking (i.e.,
does not block user interaction with the web page). For in-
stance, a Fast 3G configuration used in Chrome’s DevTools
would normally add 300-500 ms to a network request. The
filtering takes 10-20 ms (based on our measurement), so the
overhead is likely not noticeable to the user. However, if a

page needs an additional 10-20 ms for DOM Guard before
it can be interactable, then this could affect user experience
especially when more apps are deployed.

Nevertheless, we do not intend DOM Guard to completely
replace or supersede existing XSS defenses. We simply
demonstrate an alternative option for implementing an XSS
defense in a new platform. We hope that our example will
provide evidence for security researchers and practitioners to
utilize SWAPP for more security apps in the future.

6 Evaluation

In this work, we aim to demonstrate an alternative method
to enhance website security. As a result, our evaluation will
focus on four aspects: adoptability (Section 6.1), compatibility
(Section 6.2), extensibility/programmability (Section 6.3), and
efficiency (Section 6.4).

6.1 Adoptability
Our first goal is to provide a security framework that is easily
deployable by web developers (G1). We evaluate the adopt-
ability of our framework using two studies. First, we focus on
browser clients and survey popular browsers to check if there
are any vendors/versions that cannot adopt our framework.
Second, we focus on web servers and measure the number of
websites that meet the requirements to adopt our framework.

Client. To measure the adoptability of SWAPP within
client devices, we first list out APIs that are utilized by
SWAPP such as serviceWorker, Fetch, and IndexedDB. Then
we refer to the statistics provided by an open-source project,
CanIUse [4]. The project gathers front-end web APIs and
provides usage statistics, which are regularly updated and
maintained by the web developer community. According to
the statistics, 95% of web users are using a browser that sup-
ports all APIs used by SWAPP.

Server-side. As our framework requires a service worker,
we first need to measure how many websites are ready to
install it. To this end, we conduct a measurement study on the
top 10,000 websites based on the Tranco [35] list obtained
in April 20213. We develop a custom web crawler based on
Node’s Puppeteer and Chrome Devtools Protocol (CDP). Our
crawler will visit each website’s home page (with a 60s time-
out), and the CDP will collect all network requests/responses
and service worker updates. If the crawler fails to visit a web-
site, it will retry three times before logging the error message.

Table 3 shows the configurations we use for our crawler.
Because several websites apply different techniques to de-
tect web crawler and trap it in an infinite loop, we have to
utilize countermeasures such as using the Puppeteer stealth
plugin and trying different crawling arguments. While there
are still cases that our crawler fails to visit, the numbers we

3https://tranco-list.eu/list/2QV9

report should sufficiently represent the adoption trend of ser-
vice workers among top websites. Further optimization can
potentially lower the failed cases, but our aim is simply to
understand the adoption trend without being more disruptive
than necessary to the crawled websites. Our crawler is not
invasive and simply visits the home page of a website once
without scraping the website data.

In total, our crawler successfully visits 9,293 websites. Ac-
cording to the error messages, 491 websites are not reachable,
183 websites are timed out, 11 websites have certificate errors,
and 22 websites have other errors. We manually check 50
domain registration information of the 491 websites and find
that they are mostly domain names that are not supposed to
serve a web page such as googleusercontent.com. Further-
more, we manually visit 50 of the 183 timed out websites and
find that many websites are loaded within 1 minute outside
our crawler despite using the same browser version (and set-
ting), indicating bot prevention mechanisms may have been
deployed to trap the web crawlers from finishing loading. In
any case, we do not try to further collect information from
these websites and refer to the 9,293 websites as our baseline.

Among 9,293 websites, 8,361 websites (90%) fully use
HTTPS for all their requests, which is a strict requirement to
use a service worker. On another note, 694 websites (7.5%)
are already using a service worker, which may require slight
modification to work with SWAPP.

6.2 Compatibility: Working with an Existing
Service Worker

While the number of SW-enabled websites is still small
(7.5%), we believe service workers will be increasingly
adopted by top websites in the future. Because SWAPP may
conflict with existing service worker libraries, we need to
illustrate that SWAPP can be deployed with minimal changes.

To this end, we discuss how Workbox, a library that pro-
vides the cache-ability to SW-enabled websites, can be encap-
sulated and run as a SWAPP app. We choose Workbox as an
example for two reasons. First, Workbox is one of the most
popular libraries embedded inside a service worker. Among
the 694 SW-enabled websites, 174 websites (25%) use Work-
box. We obtain this number through static analysis of the
service worker file and identify Workbox’s API calls using
regular expressions. Second, Workbox mainly utilizes the
fetch event for cache, which has a direct relation with our
example app, Cache Guard, discussed in Section 5.1.

In order for SWAPP to work with Workbox, we have to en-
capsulate Workbox as a SWAPP app, which requires less than
30 lines of code modification to the original Workbox file. We
utilize the Workbox CLI and follow the instruction provided
by Google [20] to generate a service worker file (workbox-
sw.js) with the default setting. Next, we create an app wrapper
(WorkboxApp.js) for the generated service worker shown in
Listing 2. Finally, we modify the generated service worker

Table 3: The settings and environment information for crawling SW-enabled websites.

Chromium Version 92.0.4515.159
Puppeteer
Puppeteer-extra-plugin-stealth
Arguments

Version 10.2.0
Version 2.7.8
[headless: false, ‘no-sandbox’, ‘disable-setuid-sandbox’, ‘disable-infobars’,
‘window-position=0,0’, ‘ignore-certifcate-errors’, ‘ignore-certifcate-errors-spki-list’,
‘start-maximized’]

Chrome Devtools Protocol
Events listened

Version 0.0.901419
[‘Network.requestWillBeSent’, ‘Network.requestWillBeSentExtraInfo’,
‘Network.responseReceived’, ‘Network.responseReceivedExtraInfo’,
‘ServiceWorker.workerVersionUpdated’]

Operating System Ubuntu 18.04 (64-bit)

file and import it inside the app. This process preserves the
caching policy provided by Workbox, and the SWAPP’s Work-
box app we create also works in conjunction with Cache
Guard as expected.

1 [WorkboxApp.js]
2 + var wbApp = new Object();
3 + wbApp.reqMatch = function(fObj) {
4 + return true;
5 + };
6
7 + self.importScripts("workbox -sw.js");
8 + f2fInst.addApp(wbApp);
9

10 [workbox -sw.js]
11 addFetchListener() {
12 - self.addEventListener("fetch", (e => {
13 - const {
14 - request: t
15 - } = e, s = this.handleRequest({
16 - request: t,
17 - event: e
18 - });
19 - s && e.respondWith(s)
20 - }))
21
22 + let ref = this;
23 + wbApp.reqApply = async function(fObj) {
24 + let e = fObj.getMetadata();
25 + const {
26 + request: t
27 + } = e, s = await ref.wbHandleRequest({
28 + request: e,
29 + event: e
30 + });
31 + let b = await s.text();
32 + fObj.setMeta(s);
33 + fObj.setBody(b);
34 + fObj.setDecision("cache");
35 + return fObj;
36 }
37 }

Listing 2: Migrating Workbox to SWAPP

6.3 Extensibility and Programmability
In Section 5, we demonstrate the programmability of SWAPP
in accordance to the goal G3. Here, we further show how easy
to develop various security apps on our platform, compared
with existing defense solutions. As shown in Table 4, SWAPP
provides a unified platform that can be used to develop various

defense solutions against different types of web attacks such
as side-channel attacks, autofill abusing attacks, data stealing,
and DOM-XSS attacks. These apps in our system can be in-
stantly deployed or updated without waiting for months/years
for browsers to officially support the same features.

Furthermore, we roughly quantify the easiness of pro-
grammability on our framework by comparing the lines of
code (LoC) app developers need to implement the same func-
tionalities (or equivalence) of existing defense mechanisms.
From Table 4, we can see that the number of LoC of apps in
SWAPP is noticeably smaller than that in traditional platforms
for most defenses, which suggests that SWAPP can reduce
the cost of implementing applicable defense mechanisms.

6.4 Overhead

We have shown that SWAPP can help develop security pro-
totypes at the client side. However, it is also imperative to
show that the clients do not suffer as a result. To this end, we
evaluate the overhead of SWAPP imposed on a client in four
different aspects: the page load time, computational power,
heap usage, and network bandwidth. We perform the testing
and measurement in a commodity laptop running Ubuntu
18.04 with Intel Core i7-8565U CPU, onboard Intel UHD
Graphics 620, and 16GB of memory. We set up four testing
configurations, each based on WordPress and phpBB on a
local webserver. The first configuration, referred to as the
Baseline, represents the original WordPress or phpBB. The
second configuration, referred to as EmptySW, has a service
worker that simply registers a fetch handler without other func-
tionalities. The third configuration has SWAPP installed but
does not contain any apps. We refer to this configuration as
SWAPP. The fourth configuration has SWAPP installed with
four apps activated: Autofill Guard, DOM Guard, Workbox,
and Cache Guard. This configuration is referred to as +Apps.
Then, we use Chrome’s DevTools to measure website visit
traces. Both the client and server are running on the same
machine, thus the network delay does not need to be taken
into account. The results are shown in Figure 5.

Table 4: Extensibility and Easiness of Programmability of SWAPP

Attack type Defense Name Description Defense Platform # of LoC

Side-channel Attack Cache Guard Selectively delay cached response on suspicious requests SWAPP 258
Instrumented JS APIs Instrument sensitive sensor APIs to apply policy Chrome Extension >400

Autofill Abusing Attack Autofill Guard Mitigate password stealing attacks in log in forms by isolation with iFrames SWAPP 223
Insecure Form Warning Disable Autofill for forms to insecure url and send alert to users Chromium ~160

Data Stealing Data Guard Reserve sensitive data in secure storage to prevent it from beling stolen SWAPP 325
Access Control Management Enhance the access control policies to deny unauthorized access Sever-side Manual work

DOM-XSS Attack DOM Guard Inspect URL parameters to filter XSS payload SWAPP 406
DOMPurify.js XSS sanitizer for HTML, MathML, and SVG Client-side 1542

Wordpress phpBB
0

100

200

300

400

500

600

Fi
rs

t p
ag

e
lo

ad
 (m

s)

246.0

338.4

262.6

342.6

270.6

345.0

283.0

374.0

Baseline
EmptySW
SWAPP
+Apps

Wordpress phpBB
0

100

200

300

400

500

600

Su
bs

eq
ue

nt
 p

ag
e

lo
ad

 (m
s)

250.8

345.0
289.4

363.2
329.4

422.0
388.8

570.0Baseline
EmptySW
SWAPP
+Apps

Wordpress phpBB
0

25

50

75

100

125

150

175

200

Ov
er

he
ad

 D
ist

rib
ut

io
n

(m
s)

40.1

58.8

45.5

118.9

35.2

43.2

5.4

15.9

9.5

17.6

3.8

11.4SWAPP Logic w/o Apps
SWAPP Logic w/ Apps
Workbox
Cache Guard
DOM Guard
Autofill Guard

(a) Average First Page Load Time (b) Average Subsequent Page Load Time (c) SWAPP Bottleneck Distribution

Wordpress phpBB
0

500

1000

1500

2000

2500

CP
U/

M
em

or
y

po
we

r

1674

2002

1709

2014

1712

2047

1695

2026

Baseline
EmptySW
SWAPP
+Apps

Wordpress phpBB
0

2

4

6

8

10

12

14

Pe
ak

 h
ea

p
us

ag
e

(M
B)

2.2 2.6

4.9

8.1

5.9

10.8

6.6

14.4Baseline
EmptySW
SWAPP
+Apps

Wordpress phpBB
0

200

400

600

800

1000

1200

1400

Ba
nd

wi
dt

h
(k

B)

198

1468

198

1472

198

1473

202

1480Baseline
EmptySW
SWAPP
+Apps

(d) CPU/Memory Power (e) Peak Heap Usage (f) Bandwidth

Figure 5: Overhead of SWAPP

6.4.1 Page Load Time

In this evaluation, we compare the average page load time
between each configuration in phpBB and WordPress. We
make sure that the browser caching is disabled and all site
data is cleared for every measurement. The average page load
time is calculated among five runs, and it is shown in Figures
3(a) and 3(b).

First Page Load. This scenario represents the first time a
user visits the website. As shown in Figure 5(a), we observe
a gradual increment in the page load time across different
settings due to the parsing of additional JavaScript files. Note
that the service worker and SWAPP functionalities may not
be fully activated during the first page load. For instance, the
initial fetch events for the first page load will not go through
the service worker.

Subsequent Page Load. In the following visits, the service
worker will be fully activated. In addition to extra JavaScript

files being parsed, we observe an overhead incurred by ser-
vice worker activation cost. Specifically, even when a service
worker is empty, the browser still needs to activate the service
worker before a request can be fetched. The difference be-
tween the EmptySW settings from Figures 3(b) and 3(a) rep-
resents this activation cost. On average, an additional 26.8ms
(10.26%) and 20.6ms (6.01%) activation cost is incurred to
WordPress and phpBB respectively. This behavior is also doc-
umented in Google’s blog [10], in which navigation preload
is used to reduce the activation cost. However, SWAPP can-
not preload a resource as prefetching a malicious request can
mean the attack is already successful (i.e., the information
from the victim already reaches the attacker’s server).

SWAPP Overhead. There are two types of overhead intro-
duced by SWAPP: application logic and SWAPP logic. The
application logic overhead scales with the number of requests
because an app may need to process every request/response.

On average, Workbox, Cache Guard, DOM Guard, and Aut-
ofill Guard introduce 35.22ms, 5.4ms, 9.5ms, and 3.8ms to
WordPress (and 43.2ms, 15.9ms, 17.64ms, and 11.44ms to
phpBB) respectively. The distribution of this overhead is il-
lustrated in Figure 5(c). Note that the numbers of requests for
loading WordPress and phpBB home pages are 18 and 48 re-
spectively. In total, the four apps introduce 53.92ms (20.28%)
to the original WordPress and 88.18ms (25.5%) to the original
phpBB.

The SWAPP logic overhead scales with the size of each
response’s body. This is because when an app needs to inspect
a response, SWAPP needs to parse the body of the response.
We can observe this overhead in phpBB shown in Figure 5(c).
When there are no apps, SWAPP’s logic incurs 58.8ms (17%)
overhead. When there are four apps installed, SWAPP’s logic
incurs 118.8ms (34.4%). On the other hand, WordPress only
has 40ms (15.8%) and 45.4ms (18.1%) overhead when there
are no apps and when there are four apps, respectively. Note
that WordPress requires 50.1kB for loading its home page and
phpBB requires 187kB. We observe that parsing the largest
response of phpBB incurs almost 20ms alone.

In total, when deploying SWAPP in the original WordPress
and phpBB with the four apps, there are 138ms (55%) and
225ms (65.2%) overhead, respectively. Note that for the pur-
pose of evaluation, we enable the four apps for all types of
requests. In practice, the developers can configure the apps
to selectively activate them for certain pages or types of re-
sources. This could help reduce the overhead of SWAPP and
its apps. For instance, the largest file requested by phpBB is
a font, which SWAPP spends 20ms parsing but none of the
four apps actually takes any action on it. Furthermore, the
measurement was conducted in a local environment, and the
calculations do not consider the network delay. The network
latency depends on several factors, but Google’s DevTools
would add approximately 300-500ms when the Fast3G set-
ting is applied in our testing environment. Considering an
actual user experience with a 400ms network delay, the over-
head of SWAPP would be 12% for WordPress without apps
and 21.2% with four apps. Similarly, the overhead would be
10.3% for phpBB without apps and 30.2% with four apps.
Therefore, we believe SWAPP can be a considerable option
for web developers, researchers and practitioners to quickly
develop new prototypes in the future.

6.4.2 CPU/Memory Power and Heap Usage

To measure the CPU and memory usage, we utilize Light-
house, a gadget provided by Chrome’s Devtools for measuring
the website’s overall performance. Lighthouse will load the
website and give a score for the CPU and memory power as a
numerical value. While this might not be the most accurate
method to measure, it gives a value that can be easily com-
pared. Based on the result shown in Figure 5(d), we observe
no differences between each configuration, thus the CPU and

memory utilization overhead is minimal.
To measure the heap usage, we manually define a set of

actions that normal users would do (i.e., visit the home page,
log in, post a forum’s topic or publish a blog, etc.). Then, we
collect the heap sampling records. The numbers shown in
Figure 5(e) represent the peak heap usage during the actions.
Note that using samplings may not yield the absolute peak
usage, thus we average the numbers across five trials. Overall,
we observe a strictly increasing trend in heap usage in both
WordPress and phpBB. The inclusion of SWAPP can bring
additional 20-30% to the heap usage compared to an empty
service worker, and the apps can introduce 10-30% overhead
compared to when there is no app. Nonetheless, the idle heap
usage of WordPress and phpBB are similar across all settings
with 4.6Mb (+/-5%) and 5.1Mb (+/-7%) respectively.

6.4.3 Network Bandwidth

Because we run the client and server for our testing on the
same machine, there is no actual network bandwidth. Regard-
less, Chrome’s DevTools can calculate the network bandwidth
during a page load, which can correctly measure the amount
of bandwidth caused by SWAPP. We collect the network band-
width of a set of page navigation similar to Section 6.4.2. The
amount of resources loaded is shown in Figure 5(f).

We observe that the amount of additional resources loaded
is mostly negligible across all settings. The size of SWAPP
is less than 1kB, and it is only loaded on the first page as
expected. Although we observe almost a double amount of
the number of requests, it does not incur additional resource
loaded. The DevTools simply counts a request twice, once
for the original request, and second for when the request is
handled by the service worker. This also explains why the
page load time increases when a website has a running service
worker with a fetch event handler. For every request, now the
browser will have to wake up the service worker to handle the
request, which can incur additional computational overhead.
Regardless, the amount of extra network bandwidth is still
negligible.

7 Limitation and Discussion

Nowadays, most websites (94% according to a recent re-
port [18]) embed at least one third-party resource, e.g.,
through <script> or tags. Similarly, many websites
also make use of cross-origin AJAX requests (XHR). Gen-
erally, for a cross-origin XHR to be fetched correctly, the
CORS (Cross-Origin Resource Sharing) protocol of the re-
source must be correctly configured.

Our approach requires network interception, which may in-
clude intercepting cross-origin requests. Because the service
worker also adheres to the CORS protocol, SWAPP will not
be able to read certain request headers or modify the content

of cross-origin responses depending on the CORS configu-
ration [5]. For example, when it is the no-cors mode, only
simple HTTP headers are accessible and the response prop-
erties will be inaccessible to SWAPP. If an app attempts to
access such response, it will result in an error.

Among the apps that we developed, Autofill Guard and
Data Guard do not access cross-origin resources and only
modify HTTP pages, which are from the same origin, while
simply forwarding other requests/responses. In the case of
Cache Guard, it sets the timer of each request (including cross-
origin) when forwarding non-page requests for computing the
average network delay. Therefore, it requires CORS-enabled
responses, in which the no-cors mode would suffice because
Cache Guard does not read the response properties.

While the restriction from the CORS protocol limits the
direct applicability of SWAPP to seamlessly work with cross-
origin resources, we envision SWAPP as a first step toward
providing first-party developers a fast-prototyping framework
for deploying security applications. With more websites adopt-
ing service workers, SWAPP will have better protection cover-
age. We leave the full integration of SWAPP with third-party
resources for future work.

8 Related Work

In addition to existing web defenses discussed in Section 2.2,
the security of service workers is an emerging research topic
that recent researchers have discussed. Lee et al. [36] and Pa-
padopoulos et al. [40] demonstrated how a malicious service
worker can be utilized by attackers to run malicious back-
ground tasks (i.e., crypto-currency mining or botnet client).
Watanabe et al. discussed how a malicious service worker
can be injected into a benign re-hosted website [53]. In more
recent work [28], we showed a novel type of Cross-site script-
ing called SW-XSS that can let attackers execute malicious
code inside a benign service worker and potentially hijack it.
Karami et al. [33] and Squarcina et al. [48] discussed how
attackers can leverage the cache API, which is supported in
the service worker, to leak user privacy or escalate the initial
XSS attack. These prior studies tried to leverage or manip-
ulate service workers for malicious purposes. Our work is
orthogonal to them as we take the lessons learned to enhance
the security of service workers and demonstrate how service
workers can become a unified platform to provide security for
websites.

9 Conclusion

In this paper, we propose SWAPP, a unified client-side se-
curity framework deployed on the service worker. SWAPP
allows web developers to offload a part of security tasks from
server to client and enables the possibility to deploy emerging
security features before they are supported by mainstream
browsers and widely deployed on user devices. We developed

example apps to show the high programmability and extensi-
bility of SWAPP. Compared to traditional server-side imple-
mentation, security features can be implemented in SWAPP
and easily deployed by developers in a more timely and flexi-
ble manner. The evaluation results prove that SWAPP can in-
troduce its benefits to the ecosystem with reasonable overhead.
We believe that SWAPP offers a powerful new framework for
prototyping and delivering innovative security applications
into the rapidly evolving world of web development.

ACKNOWLEDGEMENTS

We want to thank our shepherd Yinzhi Cao and the anony-
mous reviewers for their valuable comments. This material is
based upon work supported in part by the National Science
Foundation (NSF) under Grant No. 1700544 and ONR Grant
No. N00014-20-1-2734. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of NSF
and ONR.

References

[1] Adblock Usage Statistics. https://backlinko.com/
ad-blockers-users.

[2] Autofill Attack. https://github.com/
anttiviljami/browser-autofill-phishing.

[3] Autofill Report. https://bugs.chromium.org/p/
chromium/issues/detail?id=448539.

[4] Can I use. https://caniuse.com/.

[5] CORS modes. https://developer.mozilla.org/
en-US/docs/Web/API/Request/mode.

[6] CSRF Prevention. https://cheatsheetseries.
owasp.org/cheatsheets/Cross-Site_Request_
Forgery_Prevention_Cheat_Sheet.html.

[7] CVE-2021-41277. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=2021-41277.

[8] CVE-2021-43175. https://nvd.nist.gov/vuln/
detail/CVE-2021-43175.

[9] Forbidden HTTP headers. https://developer.
mozilla.org/en-US/docs/Glossary/Forbidden_
header_name.

[10] Google’s Blog Service Worker Boot Up Delay.
https://developers.google.com/web/updates/
2017/02/navigation-preload/.

[11] HackerOne Report. https://www.hackerone.com/
top-ten-vulnerabilities.

https://backlinko.com/ad-blockers-users
https://backlinko.com/ad-blockers-users
https://github.com/anttiviljami/browser-autofill-phishing
https://github.com/anttiviljami/browser-autofill-phishing
https://bugs.chromium.org/p/chromium/issues/detail?id=448539
https://bugs.chromium.org/p/chromium/issues/detail?id=448539
https://caniuse.com/
https://developer.mozilla.org/en-US/docs/Web/API/Request/mode
https://developer.mozilla.org/en-US/docs/Web/API/Request/mode
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-41277
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-41277
https://nvd.nist.gov/vuln/detail/CVE-2021-43175
https://nvd.nist.gov/vuln/detail/CVE-2021-43175
https://developer.mozilla.org/en-US/docs/Glossary/Forbidden_header_name
https://developer.mozilla.org/en-US/docs/Glossary/Forbidden_header_name
https://developer.mozilla.org/en-US/docs/Glossary/Forbidden_header_name
https://developers.google.com/web/updates/2017/02/navigation-preload/
https://developers.google.com/web/updates/2017/02/navigation-preload/
https://www.hackerone.com/top-ten-vulnerabilities
https://www.hackerone.com/top-ten-vulnerabilities

[12] HTML Encoder. https://github.com/
mathiasbynens/he.

[13] HTTPS Everywhere. https://www.eff.org/
https-everywhere.

[14] JS-XSS. https://github.com/leizongmin/
js-xss.

[15] NoScript. https://noscript.net/.

[16] Service Worker Support. https://caniuse.com/
?search=service%20worker.

[17] Snort. https://www.snort.org/.

[18] Third-party script usage. https://almanac.
httparchive.org/en/2021/third-parties.

[19] Workbox. https://developers.google.com/web/
tools/workbox.

[20] Workbox CLI. https://developers.google.com/
web/tools/workbox/modules/workbox-cli.

[21] XSS Auditor Deprecation. https://www.
chromium.org/developers/design-documents/
xss-auditor.

[22] XSS Filters. https://github.com/YahooArchive/
xss-filters.

[23] XSS Payload. https://github.com/payloadbox/
xss-payload-list.

[24] Devdatta Akhawe and Adrienne Porter Felt. Alice in
warningland: A large-scale field study of browser se-
curity warning effectiveness. In 22nd USENIX Secu-
rity Symposium (USENIX Security 13), pages 257–272,
Washington, D.C., August 2013. USENIX Association.

[25] Karthikeyan Bhargavan, Antoine Delignat-lavaud, and
Sergio Maffeis. Defensive javascript building and veri-
fying secure web components.

[26] Yinzhi Cao, Chao Yang, Vaibhav Rastogi, Yan Chen,
and Guofei Gu. Abusing browser address bar for fun
and profit - an empirical investigation of add-on cross
site scripting attacks. volume 152, pages 582–601, 11
2015.

[27] Pooja Chaudhary, B. B. Gupta, Chang Choi, and
Kwok Tai Chui. Xsspro: Xss attack detection proxy
to defend social networking platforms. In Sriram Chel-
lappan, Kim-Kwang Raymond Choo, and NhatHai Phan,
editors, Computational Data and Social Networks, pages
411–422, Cham, 2020. Springer International Publish-
ing.

[28] Phakpoom Chinprutthiwong, Raj Vardhan, GuangLiang
Yang, and Guofei Gu. Security study of service worker
cross-site scripting. ACSAC ’20, page 643–654, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[29] Phakpoom Chinprutthiwong, Raj Vardhan, GuangLiang
Yang, Yangyong Zhang, and Guofei Gu. The service
worker hiding in your browser: The next web attack
target? RAID ’21, page 312–323, New York, NY, USA,
2021. Association for Computing Machinery.

[30] Shashank Gupta and B B Gupta. Xss-safe: A server-side
approach to detect and mitigate cross-site scripting (xss)
attacks in javascript code. ARABIAN JOURNAL FOR
SCIENCE AND ENGINEERING, 41, 10 2015.

[31] Trevor Jim, Nikhil Swamy, and Michael Hicks. De-
feating script injection attacks with browser-enforced
embedded policies. In Proceedings of the 16th Interna-
tional Conference on World Wide Web, WWW ’07, page
601–610, New York, NY, USA, 2007. Association for
Computing Machinery.

[32] Martin Johns, Björn Engelmann, and Joachim Posegga.
Xssds: Server-side detection of cross-site scripting at-
tacks. In 2008 Annual Computer Security Applications
Conference (ACSAC), pages 335–344, 2008.

[33] Soroush Karami, Panagiotis Ilia, and Jason Polakis.
Awakening the web’s sleeper agents: Misusing ser-
vice workers for privacy leakage. In 28th Annual
Network and Distributed System Security Symposium,
NDSS 2021, San Diego, California, USA, February 21-
24, 2021. The Internet Society, 2021.

[34] David Kohlbrenner and Hovav Shacham. Trusted
browsers for uncertain times. In Proceedings of the 25th
USENIX Conference on Security Symposium, SEC’16.
USENIX Association, 2016.

[35] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, February 2019.

[36] Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin,
and Sooel Son. Pride and prejudice in progressive web
apps: Abusing native app-like features in web appli-
cations. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’18, pages 1731–1746, New York, NY, USA,
2018. ACM.

https://github.com/mathiasbynens/he
https://github.com/mathiasbynens/he
https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere
https://github.com/leizongmin/js-xss
https://github.com/leizongmin/js-xss
https://noscript.net/
https://caniuse.com/?search=service%20worker
https://caniuse.com/?search=service%20worker
https://www.snort.org/
https://almanac.httparchive.org/en/2021/third-parties
https://almanac.httparchive.org/en/2021/third-parties
https://developers.google.com/web/tools/workbox
https://developers.google.com/web/tools/workbox
https://developers.google.com/web/tools/workbox/modules/workbox-cli
https://developers.google.com/web/tools/workbox/modules/workbox-cli
https://www.chromium.org/developers/design-documents/xss-auditor
https://www.chromium.org/developers/design-documents/xss-auditor
https://www.chromium.org/developers/design-documents/xss-auditor
https://github.com/YahooArchive/xss-filters
https://github.com/YahooArchive/xss-filters
https://github.com/payloadbox/xss-payload-list
https://github.com/payloadbox/xss-payload-list

[37] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß,
Eduardo A. Vela Nava, and Martin Johns. Code-reuse
attacks for the web: Breaking cross-site scripting miti-
gations via script gadgets. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’17, page 1709–1723, New York,
NY, USA, 2017. Association for Computing Machinery.

[38] William Melicher, A. Das, Mahmood Sharif, L. Bauer,
and Limin Jia. Riding out domsday: Towards detecting
and preventing dom cross-site scripting. In NDSS, 2018.

[39] Leo Meyerovich and Ben Livshits. Conscript: Speci-
fying and enforcing fine-grained security policies for
javascript in the browser. 01 2010.

[40] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Poly-
chronakis, Evangelos P. Markatos, Sotiris Ioannidis, and
Giorgos Vasiliadis. Master of web puppets: Abusing
web browsers for persistent and stealthy computation. In
26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019.

[41] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. Why people (don’t)
use password managers effectively. In Proceedings of
the Fifteenth USENIX Conference on Usable Privacy
and Security, SOUPS’19, page 319–338, USA, 2019.
USENIX Association.

[42] Phu H. Phung, David Sands, and Andrey Chudnov.
Lightweight self-protecting javascript. In Proceedings
of the 4th International Symposium on Information,
Computer, and Communications Security, ASIACCS
’09, 2009.

[43] Michael Schwarz, Moritz Lipp, and D. Gruss. Javascript
zero: Real javascript and zero side-channel attacks. In
NDSS, 2018.

[44] Hossain Shahriar, Sarah North, Wei-Chuen Chen, and
Edward Mawangi. Design and development of anti-
xss proxy. In 8th International Conference for Internet
Technology and Secured Transactions (ICITST-2013),
pages 484–489, 2013.

[45] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell,
Daniel Genkin, Yossi Oren, and Yuval Yarom.
Prime+probe 1, javascript 0: Overcoming browser-
based side-channel defenses. In Proceedings of the
30th USENIX Security Symposium, Proceedings of the
30th USENIX Security Symposium, pages 2863–2880.
USENIX Association, January 2021.

[46] David Silver, Suman Jana, Dan Boneh, Eric Chen, and
Collin Jackson. Password managers: Attacks and de-
fenses. In 23rd USENIX Security Symposium (USENIX

Security 14), pages 449–464, San Diego, CA, August
2014. USENIX Association.

[47] Sooel Son and Vitaly Shmatikov. The postman always
rings twice: Attacking and defending postmessage in
html5 websites. In NDSS, 2013.

[48] Marco Squarcina, Stefano Calzavara, and Matteo Maffei.
The remote on the local: Exacerbating web attacks via
service workers caches. In 15th IEEE Workshop on
Offensive Technologies (WOOT 21). IEEE, 2021.

[49] Sid Stamm, Brandon Sterne, and Gervase Markham.
Reining in the web with content security policy. In
Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, page 921–930, New York,
NY, USA, 2010. Association for Computing Machinery.

[50] M. Steffens, C. Rossow, Martin Johns, and Ben Stock.
Don’t trust the locals: Investigating the prevalence of
persistent client-side cross-site scripting in the wild. In
NDSS, 2019.

[51] Marius Steffens and Ben Stock. Pmforce: System-
atically analyzing postmessage handlers at scale. In
Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’20, page
493–505, New York, NY, USA, 2020. Association for
Computing Machinery.

[52] Ben Stock and Martin Johns. Protecting users against
xss-based password manager abuse. In Proceedings
of the 9th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’14, page
183–194, New York, NY, USA, 2014. Association for
Computing Machinery.

[53] T. Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and
T. Mori. Melting pot of origins: Compromising the in-
termediary web services that rehost websites. In NDSS,
2020.

[54] Peter Wurzinger, Christian Platzer, Christian Ludl, En-
gin Kirda, and Christopher Kruegel. Swap: Mitigating
xss attacks using a reverse proxy. In 2009 ICSE Work-
shop on Software Engineering for Secure Systems, pages
33–39, 2009.

	Introduction
	Background and Motivation
	Service Worker
	Existing Defenses and Their Limitations
	A New Playground: SW-Centric Defense

	Threat Model
	SWAPP System Design
	Technical Challenges
	TC1: Homogeneous SW Environment
	TC2: Limitation of Original SW Events/APIs
	TC3: SWAPP Security Against Attackers

	Overall Design
	Supervisor
	Custom Event Manager
	TCB Environment
	Message Manager

	SWAPP Security Analysis and Design
	Security of Document Context
	Security of postMessage
	Security of IndexedDB

	SWAPP Usage and Interface

	SWAPP App Examples
	Cache Guard
	Autofill Guard
	Data Guard
	DOM Guard

	Evaluation
	Adoptability
	Compatibility: Working with an Existing Service Worker
	Extensibility and Programmability
	Overhead
	Page Load Time
	CPU/Memory Power and Heap Usage
	Network Bandwidth

	Limitation and Discussion
	Related Work
	Conclusion

