
Security Study of Service Worker Cross-Site
Scripting.

Phakpoom Chinprutthiwong
Texas A&M University
cpx0rpc@tamu.edu

Raj Vardhan
Texas A&M University
raj_vardhan@tamu.edu

Guangliang Yang
Texas A&M University

guangliang.yang11@gmail.com

Guofei Gu
Texas A&M University
guofei@cse.tamu.edu

ABSTRACT
Nowadays, modern websites are utilizing service workers to pro-
vide users with app-like functionalities such as offline mode and
push notifications. To handle such features, the service worker is
equipped with special privileges including HTTP traffic manipula-
tion. Thus, it is designed with security as a priority. However, we
find that many websites introduce a questionable practice that can
jeopardize the security of a service worker.

In this work, we demonstrate how this practice can result in a
cross-site scripting (XSS) attack inside a service worker, allowing
an attacker to obtain and leverage service worker privileges. Due
to the uniqueness of these privileges, such attacks can lead to more
severe consequences compared to a typical XSS attack. We term this
type of vulnerability as Service Worker based Cross-Site Scripting
(SW-XSS). To assess the real-world security impact, we develop a
tool called SW-Scanner and use it to analyze topwebsites in the wild.
Our findings reveal a worrisome trend. In total, we find 40 websites
vulnerable to this attack including several popular and high ranking
websites. Finally, we discuss potential defense solutions to mitigate
the SW-XSS vulnerability.

CCS CONCEPTS
• Security and privacy→Web protocol security.

KEYWORDS
Service Worker, Cross-Site Scripting

ACM Reference Format:
Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, and Guofei
Gu. 2020. Security Study of Service Worker Cross-Site Scripting.. In Annual
Computer Security Applications Conference (ACSAC 2020), December 7–11,
2020, Austin, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3427228.3427290

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427290

1 INTRODUCTION
To improve the browsing experience of web users, modern websites
are utilizing service workers (SW) to enable app-like features such
as offline working mode and push notifications. Such features re-
quire a service worker to run in a special execution context which
is isolated from the main page. This allows a service worker to
intercept and modify network traffic of the corresponding website
to provide a cached HTTP response when the network is offline.
Additionally, as a service worker does not require a browser’s win-
dow to be open for its functionalities to execute, it can listen to and
handle push messages which can arrive spontaneously.

As a service worker provides such unique functionalities and exe-
cution environment, its security is critical. Generally, web browsers
enforce several rules to ensure a service worker will be safe from
outside tampering. For instance, only a same-origin file is allowed
to be registered as a service worker. Despite existing safeguards,
we find a new XSS vulnerability that allows an external source to
execute malicious code inside a service worker.

In this work, we discover a considerable number of websites
introduce a questionable programming practice and break the secu-
rity assumptions in favor of configurability and flexibility of their
service workers. These websites usually install a service worker
with URL search parameters as internal configurations, which are
blindly trusted inside the service worker. When a malicious parame-
ter is fed and reaches a sensitive function, it can allow an attacker to
execute a cross-site script and compromise the service worker. We
term this type of vulnerability as Service Worker based Cross-Site
Scripting (SW-XSS). Unlike other types of XSS, SW-XSS attackers
do not necessarily leverage a web page’s vulnerable parameters.
Instead, they target the vulnerable parameters of a service worker
and gain access to extra capabilities from the service worker that
are not available to other XSS attackers.

With the service worker’s capabilities, an attacker can gain sev-
eral advantages. Because a service worker runs in the background
and its lifetime lasts until a new service worker is provided or the
website’s data is manually cleared, the attacker can stealthily utilize
a compromised service worker for an extended period of time. The
attacker can also use the service worker to persistently monitor
the victim’s actions or inject malicious content into the web page.
In some cases, an attacker only needs to send victims a URL to
compromise the service worker. The compromised service worker

https://doi.org/10.1145/3427228.3427290
https://doi.org/10.1145/3427228.3427290
https://doi.org/10.1145/3427228.3427290

Click this link!

benign.com?p=<exploit>benign.com/
sw.js?p=<exploit>

Register a service worker

Figure 1: A motivating example demonstrating how cross-
site scripting can also occur inside a service worker. A re-
mote attacker can compromise and control a benign service
worker to steal victim’s sensitive data.

can then inject malicious content into the web page before forward-
ing sensitive information to the attacker as shown in Figure 1. We
discuss this attack in more detail in Section 4.3.

To evaluate the impact of SW-XSS vulnerability on real-world
websites, we develop a service worker scanning tool called SW-
Scanner. We use SW-Scanner to crawl and analyze the top 100,000
websites in the wild. SW-Scanner applies taint information on
URL search parameters to track how they are used inside a ser-
vice worker and reports when a tainted value reaches a sensitive
function. We find the SW-XSS vulnerability in 40 of these websites
which includes some popular and high profile websites with more
than a hundred million combined visitors per month. With growing
adoption of service workers, we believe this trend will only get
worse if web developers keep overlooking this problem. We hope
that our work will help raise awareness regarding the importance
of service worker’s security and provide useful insights for web
developers regarding the secure implementation of service workers
in the future.

Our main contributions are as follows.
• We discover a new XSS vulnerability caused by a question-
able programming practice followed by some websites to
install a service worker. We analyze this class of vulnerability
(Section 4) and term it as SW-XSS. To the best of our knowl-
edge, we are the first to identify XSS in a service worker
and show a practical attack that can compromise a benign
service worker.

• Wedevelop a serviceworker scanning tool called SW-Scanner
(Section 5) to evaluate the real-world impact of the problem
(Section 6) and find that 40 websites are vulnerable. This
includes several popular websites that have more than a hun-
dred million combined visitors per month. We open source
the tool and collected data to help the research community
of this domain1.

2 BACKGROUND
In this section, we first provide an introduction to web workers.
Next, we discuss some unique traits of service workers whichmakes
their purpose different from other web workers. Then, we describe

1https://u.tamu.edu/sw-scanner

the steps involved in a service worker’s lifecycle. Finally, we discuss
the existing forms of cross-site scripting (XSS) attacks.

2.1 Web Workers
In the early stage of web development, a single processor’s thread
was used to handle all the needs of a website, such as handling
UI events and manipulating the DOM. However, modern websites
offer rich functionalities which requires running several tasks si-
multaneously, such as processing a large amount of API data while
keeping the UI responsive. For such needs, a single thread was not
enough to ensure a smooth web browsing experience for users.
This led to the development of web workers to handle concurrent
tasks. Ultimately, a web worker is JavaScript code that runs in a
different thread to handle delegated concurrent tasks that do not
require user interaction.

2.2 Service Worker
A service worker is a type of web worker. Like any web worker, it
runs in a background thread that is separate from the main web
page. However, it contains a set of unique features that makes the
purpose of service workers different from other web workers. A
service worker supports two core features: offline usage and in-
stant push notifications. As a result, a service worker can modify
HTTP requests/responses of the corresponding website to serve an
appropriate web page when the network is offline. Furthermore, it
can be activated any time, regardless of whether the main page is
open, to instantly display a push message that may arrive sponta-
neously. Additionally, once registered, a service worker can persist
across sessions. These are the unique traits of a service worker as
compared to other web workers.

2.3 Service Worker Lifecycle
For a website to utilize a service worker, it has to first fully op-
erate securely in HTTPS. Then, the website can call the naviga-
tor.serviceWorker.register API to register a service worker. This API
accepts two parameters: the file path of a service worker and the
scope that the service worker can control. The first parameter is
required, but the second parameter is optional. When the scope
parameter is not provided, the default scope is the current path,
allowing the registered service worker to control HTTP traffic of
web pages under the current path. Once the register API is called,
the browser will download, parse, and execute the specified service
worker file. If the file is new or has changed from the previous
version, the browser will install the new service worker. Otherwise,
the browser will simply reactivate and return the current service
worker. A successfully registered service worker will go through
the install and activate lifecycle events.

Install. This event only occurs once per service worker during
its initial execution. A website can add the install event listener to
handle this event and use this opportunity to execute any prelimi-
nary tasks such as caching resources.When the browser is installing
a new service worker, it allows event handlers to be added to the ser-
vice worker. These event handlers include fetch, push, and message,
which can be used to control HTTP traffic, handle push messages,
and communicate through the postMessage API respectively.

2

sw.js?p=<exploit>

SW
Register Sensitive Sink

vulnerable.com?p=<exploit>

Document Context Service Worker Context

Strong Attacker

Weak Attacker

Victim

Malicious Content

Figure 2: An illustration of SW-XSS attack threat model

Activate. This event is dispatched when the installed service
worker is activated and becomes fully functional. Once a service
worker is activated, its event handlers will be ready to handle the
corresponding events. The activated service worker can operate
until it is put into idle. When its main page is closed, the service
worker will be put into idle within a short period of time (usually
less than a minute). All ongoing tasks will be frozen until an event
such as a push message’s arrival is dispatched, and then the service
worker will be activated again.

2.4 Cross-Site Scripting
Cross-site scripting or XSS attack is one of the most common types
of web attacks due to the simplicity with which it can be launched
(e.g., requires minimal interaction with the victim) and its imme-
diate impact. As a result, several forms of XSS attacks and the
corresponding countermeasures were proposed.

Typically, XSS attacks are a type of code injection generally in
the form of client-side scripts (e.g., JavaScript), which come from a
malicious cross-domain source. The XSS attackers exploit a flaw
that allows inputs, usually in the form of URL parameters, to reach a
sensitive function (such as eval) without proper sanitization. There
are three common types of XSS.

Stored XSS. An attacker crafts and navigates to a URL with a
parameter that will get stored in a server database. The parameter, in
the form of malicious JavaScript code, may normally be represented
as a message in a forum or the description of a user’s public profile.
When a victim visits the page with the malicious code, the code
can get executed in the victim’s browser, allowing the attacker to
steal sensitive information from the victim.

Reflected XSS. An attacker lures or redirects a victim to visit a
URL with a malicious parameter, which will then get forwarded to
the corresponding web server. In this case, the parameter does not
get stored, but it is immediately reflected (or echo-ed) back to the
victim and get executed in the victim’s browser.

DOM XSS. Similar to reflected XSS, an attacker first lures or
redirects a victim to visit a malicious URL. However, the specified
parameter will not get forwarded to the corresponding server, and
the attack occurs entirely in the client-side. A prime example of
DOM XSS vulnerability is when a website reads its URL (using
document.location) and writes the URL parameters onto its page
(i.e., using document.write) without proper sanitization.

3 THREAT MODEL
Generally, web attacks consider two separate contexts of client and
server. However, as shown in Figure 2, we extend the web attack

model and divide the client-side into two contexts: document con-
text and service worker context. Document context can be regarded
as the usual scope of client-side in a traditional web attacker’s
threat model, which covers the main page’s execution context or
the DOM. Service worker context, which was not accounted for in
the previous literature, can be regarded in a similar manner to the
server-side in a traditional web attack model, where an attacker
cannot directly tamper with it but can still leverage a vulnerability
in the service worker context to compromise it. In this work, we
consider two types of attackers which we term as weak attackers
and strong attackers.

Weak Attackers represent a threat model consistent with the
existing Web attackers present in any typical XSS attack. This type
of attacker can craft a URL that exploits certain vulnerable code in
the target website. When a victim navigates to the URL or visits
a malicious website that includes an iFrame pointing to the URL,
the victim’s service worker will be immediately compromised. The
attackers can use the service worker’s fetch event to inject malicious
code into the document context and carry out malicious tasks that
any typical XSS attacker can perform.

Strong Attackers are present in the form of JavaScript code
executing in the document context. This type of attacker has access
to document context’s other unprotected scripts and APIs, thus
they can already launch a wide range of attacks such as cookie
stealing, phishing, etc. Their goal is to infect and take control of the
presumably secure service worker to obtain additional capabilities
from the service worker context (discussed further in Section 4.1.2).
Such attackers can still greatly benefit from compromising a service
worker, given that, as stated by the W3C service worker’s security
consideration, service workers create the opportunity for a bad
actor to turn a bad day into a bad eternity.2

Nevertheless, both types of attackers share an important require-
ment. The target service worker must use URL search parame-
ters inside a sensitive function without proper sanitization during
the registration process, allowing code execution inside the ser-
vice worker. This basis defines what we consider a vulnerability
throughout this paper.

4 SW-XSS ATTACK
In this section, we analyze the SW-XSS vulnerability. First, we dis-
cuss the motivation of an attacker to conduct a SW-XSS attack, i.e.,
address the question of why an attacker would target and compro-
mise a benign service worker. For both weak and strong attackers,
we examine the additional advantages or special privileges pro-
vided by a service worker and how the attackers may utilize them.
Then, we discuss the challenges of compromising a service worker
and examine why existing safeguards may not be adequate. Finally,
we demonstrate how an attacker can compromise a benign service
worker through SW-XSS vulnerability and discuss the differences
of this attack compared to traditional XSS attacks.

4.1 Motivation
A service worker provides several unique functionalities that are
not available in other contexts, thereby making it a new target for

2https://www.w3.org/TR/service-workers/#security-considerations
3

attackers. As we assume two types of attackers, we discuss the
motivation for each type of attacker as follows.

4.1.1 Weak attacker. For a weak attacker, the most prominent as-
pect of a service worker is that it creates a new attack vector in the
form of a new sensitive function called navigator.serviceWorker.register.
As we will later demonstrate in Section 4.3, this function plays an
important role in the SW-XSS attack as it can potentially allow URL
parameters to pass into the service worker, which can then be used
to inject malicious code back into the document context. There-
fore, the unsafe usage of this function can at least lead to similar
consequences as other sensitive functions such as document.write
or innerHTML utilized by a DOM-XSS attacker. To the best of our
knowledge, we are the first to identify the service worker’s register
API as a sensitive function.

Not only can a service worker open a new attack vector for
launching an XSS attack, it can also provides several unique func-
tionalities that can be leveraged by an attacker. For a weak attacker,
these features are a bonus that can be used to escalate the initial at-
tack, but they are the main goal for a strong attacker. Therefore, we
will explore these functionalities while discussing the motivation
for a strong attacker.

4.1.2 Strong attacker. As a strong attacker already resides in the
document context, the motivation is different from a weak at-
tacker’s. A strong attacker mainly wants to compromise a benign
service worker to utilize its features to escalate or strengthen the
initial attack. We discuss the features unique to the service worker
context and how an attacker may utilize them as follows.

Network traffic interception. Unlike the document context, a
service worker has access to the network traffic of the website. It can
intercept network traffic of the files under its scope and modify any
HTTP’s header and content. This type of interception can be used
to inject malicious content, and it is not subjected to the monitoring
or security enforcement of existing defenses. For example, when a
malicious third-party script in the document context is prohibited
from modifying other DOM elements (e.g., by other scripts that
wrap sensitive functions like document.writewith security checks or
by an extended in-browser defense mechanism [25, 28] that limits
the access of third-party origins), it can use the service worker to
directly modify the web page’s DOM content. Therefore, an attacker
can potentially use a compromised service worker to circumvent
certain types of defenses in the document context and execute the
actual payload.

Persistent across sessions. Once successfully registered, the
service worker’s content (e.g., event listeners) will persist until a
newer service worker replaces the old one. Similarly, a malicious
payload stored in a service worker can last across sessions. An
attacker can use this capability in conjunction with the network
traffic manipulation to fully take control of the target website for
an extended period of time. This can especially benefit a temporary
strong attacker (i.e., in the case of reflected XSS attacks) as she
can turn the attack into a permanent one by hijacking the service
worker.

Instant push notification. One feature of a service worker
is that it allows a service provider (or an attacker) to remotely
activate a push event and display a push message at any time
regardless of whether the browser is open. This feature brings about

two advantages for an SW-XSS attacker. First, the attacker is not
required to wait for a victim to visit the website on her own accord
to launch a phishing attack. The attacker can initiate the attack
at any time through a push message. Second, the push message’s
sender is shown as coming from the website, which is normally
a legitimate website. Therefore, the phishing message will appear
more realistic compared to a message that comes from a different
and unknown website.

4.2 Challenges
As a service worker contains unique privileges that other contexts
do not have, it is designed with security as one of its priorities.
Naturally, an attacker cannot easily compromise a benign service
worker due to the service worker’s built-in safeguards. Here we
discuss the challenges that an attacker could face while targeting a
benign service worker and how the attacker may circumvent the
corresponding protections. We also discuss why certain safeguards
may be inadequate in preventing the attacker.

First-party only registration. A browser only allows a first-
party file to be registered as a service worker. This ensures third-
party scripts embedded in the document context will not register
their own script as a service worker. However, it does not prevent
the registered service worker from importing an additional script
from an external domain through the importScripts API. Therefore,
this API can still create an opportunity for an attacker to launch an
SW-XSS attack.

Order of execution. A service worker runs mostly in an event-
based environment, thus the privileges are provided in the form
of events that can be handled. For instance, the fetch event is used
to handle network traffic, and the push event is used to handle
push messages. These event handlers can only be added (using
the addEventListener API) during the install lifecycle. Once the
installation is finished, the browser will deny any attempt to register
a new event listener. Similarly, an event cannot have more than
one listener attached to it. Therefore, the goal of attackers is to add
event handlers before the legitimate code adds its own handlers.

When an attacker fails to add an event listener, the impact of
the attack is greatly limited. The injected malicious code would
not gain any privileges and it will only get executed when the
service worker is activated (i.e., when the website itself is visited),
which is no different than compromising the document context.
In this scenario, to indirectly influence the handler, the malicious
code could still try overriding existing functions inside the service
worker that will be called by an event handler.

While the SW-XSS attack heavily relies on the order of execution
of the malicious code, we find that it is not difficult to launch this
attack in practice. As we will later show in Section 6.2.1, websites
with service workers often add event listeners at a later stage after
having imported additional scripts. This action of importing addi-
tional scripts is actually the root cause of the SW-XSS vulnerability.
As a result, the current trend in how websites implement their
service workers surprisingly favors the SW-XSS attackers.

Service worker’s freshness. Generally, a web browser will
constantly check a registered service worker and compare it to
the hosted service worker file to make sure the service worker is
up-to-date. When there is a different version available (i.e., a byte

4

https://www.vulnerable.com/sw.html?resourceHost=https://attacker.com

Figure 3: A screenshot of an SW-XSS attack targeting vulner-
able.com, allowing attackers to steal the victim’s sensitive
information.

difference between the files is detected), the old service worker will
be replaced. Therefore, an attacker who may have hijacked the old
service worker will lose control of it.

Although this security mechanism can theoretically help prevent
an attacker from keeping control of a hijacked service worker for a
long period of time, there are two reasons why it is insufficient in
practice. First, this check of freshness does not include the imported
files. That is, even when an attacker manipulates or replaces an
imported file, the browser will not replace the service worker as
long as the service worker file itself does not change. Second, we
find that most websites rarely update their service workers in prac-
tice. In Section 6.3, we measure the service worker freshness and
show that service workers deployed by websites are generally stale.
Such practices provide attackers an opportunity to circumvent this
safeguard and compromise a benign service worker.

4.3 Hijacking Service Worker
Despite the built-in security mechanisms of the service worker, it
is possible for an attacker to compromise a benign service worker.
Due to a bad practice followed by a number of SW-enabled websites,
an attacker can leverage it to import an arbitrary script into the
target service worker.

Bad practice in service worker registration. When register-
ing a service worker, a website can specify two parameters: a service
worker’s path and scope. The path specified can forward URL search
parameters into the installation. For instance, if a website regis-
ters ‘sw.js?userid=bob’ as the path, the service worker’s URL will
become ‘https://example.com/sw.js?userid=bob’. This search pa-
rameter is accessible through the self.location API from the service
worker context (equivalent to the window.location in the document
context). Such practice is becoming popular and frequently used
by websites as a way to correctly initialize service workers based
on visiting users. This is due to the limitation of service workers in
which they cannot directly access the document context informa-
tion, causing websites to utilize search parameters in the service
worker registration process to forward necessary data.

Typically, HTTP GET is a commonly used method for websites
to make a request to a server. It is not too surprising that a website
would also utilize URL search parameters to communicate with its
service worker. However, for web servers to blindly trust informa-
tion sent through the parameters, they face associated risks that
the parameters may be maliciously crafted as studied by Saxena et

al. [22] and Mendoza et al [19]. Similarly, we observe that service
workers encounter the same issue considering that the search pa-
rameters may originate from an untrusted or vulnerable source in
the document context, which is not uncommon in practice [14, 20].

Cross-site script injection in service worker. Although us-
ing URL search parameters in a service worker does not necessarily
lead to code execution in the service worker context, we find that
many websites use the parameters in sensitive functions. In the
following example, we demonstrate an SW-XSS attack using a real-
world sports website with more than 50 million visits each month.
We refer to the website in this example as vulnerable.com.

Listing 1 shows the vulnerable HTML page of vulnerable.com
and its corresponding service worker. We can observe that vul-
nerable.com hosts a vulnerable page called sw.html. At lines (1-5),
sw.html adds the load event, which will be executed upon page
load. This event handler reads and directly forwards the whole URL
parameters into the register API. Then, at lines (7-12), the service
worker will read the parameters from its URL, extract a specific pa-
rameter called resourceHost, and directly uses it in the importScripts
API. Throughout the whole process, the parameters from the origi-
nal HTML page can reach the importScripts API, which is a sensitive
function, without any sanitization. This kind of practice is ques-
tionable. Unfortunately, we find that it exists in several websites
including high profile websites such as this sports website.

1 <sw.html >
2 window.addEventListener ("load", function () {
3 navigator.serviceWorker.register ("/sw.js"
4 +location.search);
5 });
6
7 <sw.js>
8 (function () {
9 self.param = parseParams(location.search);
10 var host = self.param.resourceHost;
11 self.importScripts(host +"/ sw_fn.js");
12 }())

Listing 1: A simplified code from a vulnerable HTML page
and service worker code allowing malicious code injection
from web attackers

Based on this kind of practice, an attacker can leverage it to
launch an SW-XSS attack. Figure 3 illustrates the attack on vul-
nerable.com. First, an attacker needs to make the victim’s browser
visit vulnerable.com with exploitable URL search parameters. For
example, the attacker can craft a URL as ‘https://vulnerable.com/sw.
html?resourceHost=attacker.com’ and either tricks the victim into
clicking the URL or includes an iFrame to the URL in an attacker-
controlled website. By visiting this URL, the victim’s browser will
automatically register ‘https://vulnerable.com/sw.js?resourceHost=
attacker.com’ as vulnerable.com service worker. Consequently, the
service worker will extract the parameter and import ‘attacker.com/
sw_fn.js’ into the service worker context. The attacker can host
the sw_fn.js in her own domain to import event listeners into the
service worker and take control of the website.

After the attacker successfully injects malicious code into the tar-
get service worker, she can register for any event handler inside the
service worker context. The most important event that the attacker
needs to focus on to fully take advantage of the service worker
capabilities is the fetch event. A fetch event is generated for every
resource request. The fetch event handler has access to the request’s

5

`https://example.com/sw.js?userid=bob'
`https://vulnerable.com/sw.html?resourceHost=attacker.com'
`https://vulnerable.com/sw.html?resourceHost=attacker.com'
`https://vulnerable.com/sw.js?resourceHost=attacker.com'
`https://vulnerable.com/sw.js?resourceHost=attacker.com'
`attacker.com/sw_fn.js'
`attacker.com/sw_fn.js'

SW/Imported files Babel

sw.js

hooks.js

Iroh

Fetch

Eval

Report

Code Instrumentation Code Evaluation

Figure 4: An illustration of SW-Scanner’s pipeline.

HTTP headers, in which it can freely modify. More importantly,
the handler also has access to the corresponding responses and can
easily modify or replace their HTTP headers or bodies.

By using the fetch event handler, the attacker can inject a mali-
cious payload into the document context. The malicious payload
is usually for stealing cookie, launching a phishing attack, or per-
forming any task normally done in a typical XSS attack. As shown
in Figure 3, the attacker can easily use the fetch event to modify a
betting page of vulnerable.com to launch a phishing attack. When
the victims click on the link, they will be redirected to another
phishing page that can steal sensitive data, especially regarding
payment information.

It is worth noting that during the whole process, the victims
may not even realize that they are under attack. Because service
worker registration does not require any permission from users
and occurs silently in the background, when the attacker registers a
malicious service worker inside a benign website especially through
an iFrame, the victims are given no visual cues. Additionally, even
after the victims close the browser, the malicious service worker
can stealthily infect the victims for as long as vulnerable.com does
not update the service worker file or the victims manually remove
the service worker.

4.4 SW-XSS in comparison with existing XSS
Although SW-XSS shares some similarities with existing XSS at-
tacks such as DOM-XSS, there are certain differences which make
the SW-XSS novel. We highlight the main differences between this
attack and the existing XSS as follows.

XSS entry point. In traditional XSS, an attacker normally ini-
tiates the attack by crafting a malicious URL of a vulnerable web
page, which may be in the form of HTML or PHP. We consider such
URL as an XSS entry point. While it is true that a weak attacker
can also initiate the SW-XSS attack in a similar fashion, the actual
entry point of SW-XSS comes from the URL of the registered service
worker, which is strictly a JavaScript file. A weak attacker may be
able to launch a normal XSS attack, but it does not necessarily lead
to SW-XSS if the service worker and its URL are not vulnerable.

XSS target. While traditional XSS can compromise a web page
or other web workers, to the best of our knowledge, we are the
first to identify XSS in a service worker. Naturally, a service worker
does not have direct access to the DOM, thus it is conflicting to
regard this attack as DOM-XSS. Additionally, a service worker has
unique features, such as network manipulation, that other types of
web workers or web pages do not have. Therefore, we distinguish
and regard this type of attack as SW-XSS.

5 DETECTING SW-XSS IN THEWILD
In this section, we introduce our tool called SW-Scanner. First, we
discuss the goal of SW-Scanner in detecting SW-XSS in the wild.
Then, we present the design of SW-Scanner and its implementation.
We open source our tool and the collected data, which can be found
at https://u.tamu.edu/sw-scanner, to support more research in this
direction.

Ultimately, the SW-XSS vulnerability stems from the unsafe
usage of URL parameters in a sensitive function inside a service
worker. Therefore, to search for SW-XSS vulnerability in real-world
websites, we need to track how a service worker consumes a given
URL search parameter. To accomplish this goal, we develop SW-
Scanner as a taint tracking tool that can taint URL search parameters
of a service worker and report when a tainted value reaches a sen-
sitive function. Specifically, the taint source is the self.location API
and the taint sinks are the importScripts, Function, eval, setTimeout,
and setInterval APIs. SW-Scanner mainly consists of two modules:
the Code Instrumenter module can add taint tracking capability
onto the target script; the Code Evaluation module acts like the
controller and will execute the instrumented code and ensure that
the taint tracking runs and reports correctly.

5.1 Code Instrumenter Module
This module accepts a JavaScript file as an input. Then it checks
the input’s validity using Babel [1], a JavaScript compiler. When
the input JavaScript code is malformed, this module will use Ba-
bel to try fixing the code before rejecting it if Babel cannot do so.
After the code is validated and normalized, the instrumenter will
instrument the code to add the taint tracking capability using an ex-
isting dynamic analysis library called Iroh [2]. Iroh uses JavaScript
parser to read the target’s code and transforms it into an interme-
diate representation, which can easily locate and instrument key
locations such as the variable declaration, conditional check, or
function’s enter/exit. The full list of such locations is presented in
Iroh’s Github website [3]. Once one of these predefined locations
is reached during an execution, Iroh generates a corresponding
event that can be handled. This allows SW-Scanner to instrument
JavaScript code into the predefined key locations.

For the purpose of tracking URL search parameters, SW-Scanner
instruments taint information (by adding object’s properties) into
the taint source. The information includes a tainted label and a list
of tainted words. For example, when a tainted string "example.com"
is concatenated with a static string "/index.html", the resulting
string "example.com/index.html" will have the tainted label and a
list ["example.com"].

To correctly propagate the taint information, SW-Scanner adds
hooks to the following events: the Function and API call events, the
New operator event, and the Binary operation event. In the case of
functions and API calls, when the calling object or the parameters
contain a tainted value, the hook will taint the resulting object.
Similarly, when a New operator is called, SW-Scanner checks the
parameters and taints the resulting object if a parameter is tainted.
For a binary operation event, SW-Scanner will check the left and
right operands and taint the result if at least one of the operand is
tainted. When a tainted value reaches a sensitive sink, SW-Scanner
will log the tainted value.

6

https://u.tamu.edu/sw-scanner

Table 1: A table summary of the taint tracking analysis re-
sult.

Taint Source Taint Sink
Parameter Type Count importScripts Function

Hash 367 4 0
URL 141 80 (35) 0
Code 1 0 1

5.2 Code Evaluation Module
This module is developed as a website. It accepts the instrumented
files as an input and reports the taint result. The workflow of SW-
Scanner follows these simple steps. First, SW-Scanner prepares
its environment to mimic that of the target website. It overrides
the self.location object and modifies all origin-related properties
into the target’s origin. SW-Scanner also registers its own service
worker file using the same search parameters as the target ser-
vice worker. Next, the target’s instrumented service worker and
imported files are saved in a folder, and SW-Scanner strips off all
directory hierarchy from each file’s path. By overriding the im-
portScripts API, SW-Scanner can redirect all fetch requests to the
local copies to avoid CORS-related errors. After the environment is
set, SW-Scanner proceeds to eval the target’s instrumented service
worker file inside the service worker context. This will reenact
the registration process and report the taint tracking result upon
completion.

Adding taint information can affect the execution path of the
service worker because primitive data types in JavaScript (such as
String or Number) can transform into an Object when the taint
properties are added. When the service worker checks a variable’s
type and finds the type mismatch, it can essentially alter the ex-
ecution path. SW-Scanner ensures that this does not happen by
executing the target service worker twice during the analysis. For
the first execution, SW-Scanner does not add the taint information
to the sources. Instead, SW-Scanner adds hooks to path-related
events such as the If-Else and Switch-Case events. When the target
service worker is eval-ed the first time, SW-Scanner records the
path and the order that the target service worker has taken. Then
during the second eval-ed, SW-Scanner adds the taint information
and forces the path according to the first execution.

6 EVALUATION
In this section, we conduct an evaluation of the security impact
of the SW-XSS vulnerability in real-world websites. First, we de-
scribe the data collection process and the overall statistics of service
worker and its parameter usage in top websites. Next, we uncover
the SW-XSS vulnerabilities in the wild, present the results of SW-
Scanner, and discuss the responsible disclosure we made of the
vulnerabilities discovered. Then, we evaluate the practicality of
attackers utilizing the persistency of service workers by measuring
the service worker’s "freshness." Finally, we provide a case study of
a vulnerable popular shopping website.

6.1 Data Collection and Overall Statistics
We first crawl the top 100,000 websites, based on Tranco’s list
created in December 2019 [15], using a custom Chromium build
that we slightly modify to log the service worker registration and
importScripts API calls. We record the path, including the URL
search parameters, used in these APIs. After this step, we are left
with 7,060 websites with a service worker registered.

Next, we use Puppeteer’s headless browser to revisit the websites
in the list and download the JavaScript files. Then, we use Babel,
a JavaScript compiler, to check the code’s validity and possibly fix
small syntax issues. If Babel is unable to parse the files, then we
consider the files corrupted or protected from external download
requests, and disregard these websites. After this step, we are left
with 6,182 websites.

From the 6,182 websites, we measure the URL search parameter
usage in the registration process. Specifically, we check the log files
obtained from the data collection and analyze the service worker’s
paths. We use a regular expression to match the ‘?[key]=[value]&...’
patterns in the path. Overall, We find that 2,525 of 6,182 websites
(40.84%) specify at least one parameter in the registration API, and
each website includes 1.29 URL search parameters on average.

6.2 SW-XSS Vulnerabilities in the Wild
For the 2,525 websites with parameter usage in service worker, we
use SW-Scanner to identify the SW-XSS vulnerability. For the taint
source, we use heuristics to further categorize the parameter types
and count the number of websites with a corresponding parameter
type as shown in Table 1. We originally divided parameters into six
types (Hash, URL, Version, Flag, Key, and Code), but only three types
associated with at least one vulnerable website are reported here.
Note that the numbers on the Taint Source column only represent
the numbers of websites with a corresponding parameter type (not
necessarily used in a sensitive sink). Instead, the Taint Sink column
shows the number of websites that have at least one taint flow from
the taint source reaching a corresponding sink.

We find that there are 367 websites with hashed parameters.
Mostly, these parameters do not represent sensitive information.We
manually analyze a set of sample websites that utilize these hashed
variables and find that most of the samples used the variables as
public API’s keys or visitor’s public information like username,
which poses no immediate threat in our threat model. Nevertheless,
we find four websites reported by SW-Scanner that hash a URL
path used in the importScripts API.

The URL-type is the most dangerous type as it is used mostly
to interact with external sources, and it can be manipulated to
point to an attacker’s host. We find that 141 websites pass URL
as a parameter. Although the majority of websites use them in a
non-sensitive sink, there are 80 websites originally reported by SW-
Scanner that use it in the importScripts API. However, some of these
reports contain parameters that cannot be leveraged by an attacker.
For example, the parameter "?target=production" used in a website
reaches the importScripts API, but the string is concatenated to a
static domain, thus the attacker will not be able to import a cross-
domain script into this website. SW-Scanner performs a filtering
based on whether the tainted value can affect the imported file’s
origin by checking the list of tainted words. Unless the list contains

7

34

112.5

15 12

185

23.5 16
2 7.5 10

1.5 1.5 0.5 0.5

of

 W
eb

si
te

s

of

 M
on

th
ly

 V
is

ito
rs

 (M
ill

io
ns

)

0

2

4

6

8

10

0

50

100

150

200

250

Med
ia

Sho
pp

ing

Gam
bli

ng

Tec
hn

olo
gy

Spo
rt

Ente
rta

inm
en

t
Adu

lt

Edu
ca

tio
n

Hea
lth

Gam
e

Hob
by

Fina
nc

e

Bus
ine

ss

Lif
es

tyl
e

Website Count Monthly Visitors

Figure 5: A chart representing the number of vulnerable
websites by category, and showing their aggregatedmonthly
visitors.

a domain, the report is removed. In total, SW-Scanner automatically
removes 45 reports, leaving 35 websites.

Lastly, there is one website directly passing JavaScript code into
the URL search parameters, which we will further discuss in Section
6.4.

In total, SW-Scanner reports vulnerabilities in 40 websites. As
our threat model assumes two types of attackers, further catego-
rization of these vulnerable websites is required. For each of the 40
vulnerable websites, we manually inspect its source code to find all
window.location and register API usages. When we locate a function
that may allow URL search parameters to get executed as source
code or reach the service worker registration API, we try launch-
ing an XSS attack in our client to verify the vulnerability. If the
malicious URL search parameters can reach the registration API
in these vulnerable websites, we label the attack’s requirement as
Weak, corresponding to the Weak Attacker Model. Otherwise, the
attack’s requirement is labeled Strong.

From the 40 vulnerable websites, 11 of them can be attacked by
the Weak Attacker model, with the highest rank being in the top
20,000 websites. We use SimilarWeb [4] to measure the number of
visitors to these websites and find that there are approximately 95M
monthly visitors for the 11 websites in total. We do not claim that
these visits represent vulnerable users, but any one of these visits
can be a potential target for the attackers. Figure 5 summarizes
the number of all 40 vulnerable websites and their monthly visits
based on the category of websites. The Media category has the
highest number of vulnerable websites, followed by the Shopping
category. However, based on the numbers of monthly visits, the
Shopping and Sports categories may actually be the most affected
as there are 112.5 and 185 million monthly visits to the affected
websites respectively. From this result, we can see that even though
the number of vulnerable websites may appear to be low, the actual
impact may affect a lot of users in practice.

6.2.1 SW-Scanner Performance. Here we discuss how we confirm
the vulnerabilities reported by SW-Scanner and further address the
impact of unexplored paths in the taint analysis on the number of
vulnerabilities reported.

Confirming vulnerabilities. We manually inspect the 40 re-
ported websites to confirm the vulnerabilities. For each website,
we use Chrome’s DevTools to inspect the target website and put a
breakpoint at the reported sink. Then, we call the register API to
re-install a service worker using a parameter that we specifically
modify from the original value to point to another domain that
we control. In the other domain, we prepare a JavaScript file that
would simply add event listeners. When the parameter reaches the
breakpoint without its value being altered, which essentially allows
the imported file to register the event listeners, we can confirm that
the website is indeed vulnerable. From our analysis, we find that
all of the 40 websites can be confirmed as vulnerable and we do not
have any false-positive reports.

Unexplored paths. It is possible that some websites had a vul-
nerable path to a sensitive function that was left unexplored by
SW-Scanner. To study the likelihood of such cases, we randomly
select 100 websites that were not originally reported as vulnera-
ble by SW-Scanner for further analysis. Then, for each of these
websites, we use SW-Scanner to instrument instructions that can
force the exploration of all branches of the website’s service worker.
SW-Scanner keeps re-executing the service worker and tries taking
different paths until all paths have been exhausted. Finally, SW-
Scanner reports websites that contain an invocation of a sensitive
function, and we use Chrome’s DevTools to manually inspect them.
This entire process takes 10 minutes on average per website. Due to
the time and manual effort involved, it was not feasible to inspect
all the 2485 websites that were not reported as vulnerable.

From the 100 websites, we find 81 websites with importScripts, 39
websites with eval, 66 websites with setTimeout, 11 websites with
setInterval, and 37 websites with Function. The numbers are not
mutually exclusive as one website may contain several sensitive
functions. Our manual analysis aided by SW-Scanner for these
specific functions helped us in uncovering some interesting trends
in developer practices related to service workers.

For 79/81 websites with the importScripts API, we notice that the
API is invoked within the first 40 instructions of the service worker
with no branch happening before the API invocation. The other
2 websites includes a packed website and an obfuscated website.
Before importing any other file, the packed website performs an
unpacking process and the obfuscated website performs a deobfus-
cation process. We reverse engineer the obfuscated website, which
turns out to be using a static key that can be recovered, and find
that it has a similar structure to the packed website. Specifically,
both websites first unpack/deobfuscate the service worker, and
then proceed to invoke the importScripts within the next 40 instruc-
tions similar to the other 79 websites. Based on such real-world
observations from the 81 websites we manually inspect, we find
that a service worker execution normally follows a basic sequence
of operations structured as [unpack/deobfuscate(optional)][short
setup][import scripts][add event listeners and other functions].
The unpacking/deobfuscation process and the short setup normally
do not depend on any input parameter, thus their execution will
always follow the same path. Based on this observed basic struc-
ture of service worker’s execution sequence in these real-world
websites, typically there would not be an unexplored path for SW-
Scanner that leads to an importScripts API. That is because such
straightforward paths to the API are easily covered by SW-Scanner.

8

Additionally, we manually check each instance of eval, setTime-
out, setInterval, and Function found in the 100 websites. All of the
39 websites with eval and the 37 websites with Function use the
corresponding function simply to obtain the global service worker
object (e.g., by calling (0, eval)(’this’)). Also, the setTimeout and
setInterval are used safely among these websites (e.g., the param-
eter is a static function). We believe that because these APIs are
well known sensitive functions targeted by attackers (especially
DOM XSS attackers), web developers put more emphasis on the
safety of these APIs. This is in line with our findings as we find
almost no vulnerable websites with these APIs. In any case, when
these APIs are used unsafely, SW-Scanner will be able to detect
the vulnerability as shown in one case among the 40 vulnerable
websites involving the Function API. Therefore, from our overall
manual inspection on the 100 randomly selected websites, we find
that the impact caused by unexplored paths is minimal.

While this basic structure of service worker’s sequence of opera-
tions may hold true today, it is possible that service workers will
evolve in future with new functionalities added. This could in turn
make their usage more varied and thereby causing the structure to
change. We plan to improve our tool to accommodate this change in
the future by adding symbolic execution capability to SW-Scanner
so that we can automatically traverse all paths and decide whether
a path is vulnerable based on the possible values of the parameters.
This will significantly reduce the need for any manual intervention
while ensuring the likelihood of false-negatives is low.

6.2.2 Responsible Disclosure. We directly contacted all affected
developers of the vulnerable libraries and received replies from 7
websites, which have also fixed the problem. As not all websites
have been fixed yet, all examples and results related to a vulnerable
website’s identity will be anonymized in this work.

5000 20000 50000 100000
Website Rank

0

100

200

300

400

500

600

Le
ng

th
 (D

ay
)

Figure 6: A scatter plot illustrating the length between up-
dates of service worker files based on website ranking

6.3 Service Worker Freshness
In Section 4.1.2, we claimed that a temporary strong attacker can
benefit from the persistency of a service worker. However, it re-
mains questionable whether a strong attacker can actually utilize
the persistency in practice as the compromised service worker
could get replaced. Therefore, we aim to measure how often each

Figure 7: A screenshot of a vulnerable shopping website

website updates its service worker to deduce the upper bound for
how long an attacker can infect users.

We use the Internet Archive’s Wayback Machine to retrieve the
old service worker files [5]. Since some websites are not archived in
the Wayback machine, we cannot obtain the complete data. In total,
we can retrieve 3,166 data points from 777 websites with service
workers that contain more than one archived service worker files as
illustrated in Figure 6. For each website, we pick the oldest, newest,
and eight randomly archived files, resulting in at most ten files
per website. Finally, we sort the files based on the timestamps and
compare each file if they are different.When the adjacent timestamp
files are different, we approximate the update time to be the mean
value of the two timestamps and compute the length based on the
update time. As a result, we find that websites update their service
worker files on average every 40 days (while the median is 20 days),
and the longest time a service worker file is not updated is 649 days.
This shows a strong attacker can take advantage of the service
worker persistency for 40 days on average, supporting our claim
that service workers are not as "fresh" in practice.

Additionally, we find a high profile shopping website with 50M
monthly visit did not update its service worker file from April 2018
to at least the end of 2019. During this period, we find that this
website had an XSS vulnerability reported by OpenBugBounty [6]
in which the bug was resolved after a few months. Because there is
no change to the service worker file, any XSS attack from back then
could theoretically last in the victim’s machine for more than a year
had the attackers also leveraged the SW-XSS attack. This illustrates
the practicality of SW-XSS as it can be used in conjunction with
other XSS attacks and further shows the importance of keeping
service workers updated.

6.4 Case Study
We discuss a case study of another high-profile shopping website
(Figure 7) with approximately 40M monthly visits that SW-Scanner
reported. This website is the only vulnerable case involving direct
code execution through the Function API rather than indirect code
execution through the importScripts API like the majority of the
vulnerable websites reported. Furthermore, this website has com-
pressed and packed its service worker file making it difficult to
analyze its source code both manually and automatically. Neverthe-
less, we demonstrate that SW-Scanner can effectively discover this
case despite the complexity created by the unpacking process. The
partial code of the website’s service worker is shown in Listing 2.

9

1 ...
2 function i(t) {
3 var e = /^MATCH PATTERN$ /.exec(t);
4 if (!e)
5 throw new TypeError('Err ');
6 var n, r = o()(e, 4), i = r[1], u = r[2], a = r[3];
7 c = unescape(a);
8 ...
9 n = decodeURIComponent(escape(atob(c)));
10 ...
11 return new Function(n)
12 }
13 ...
14 var a = o.value; // o is service worker 's URL
15 ...
16 f = new URL(a.uri ,location);
17 ...
18 i(f.href)()
19 ...

Listing 2: A partial of service worker’s code of a vulnerable
website showing direct code execution from URL search pa-
rameters.

Starting at line 14, the service worker obtains its URL parameters
and use it to craft a URL object with its own origin at line 16.
Afterward, the crafted URL, stored as f, is passed into the function
i(). In the function, the URL pattern is tested at line 3, but the test
does not affect the attack in any way as it simply checks if the URL
contains certain tags indicating that JavaScript code is specified
in the parameters. From line (6-9) the code is extracted from the
parameters and returned at line 11, which later gets executed at
line 18. This process happens before any event handler is registered.
Therefore, an attacker can specify JavaScript code in the service
worker’s URL parameter to register her own event handlers and
hijack the service worker.

From this case study, we illustrate that SW-XSS can be found
even in high-profile websites and can occur in a complicated man-
ner making it hard to be detected. Therefore, such problem may be
overlooked by web developers. We hope that our work will help
raise awareness regarding the importance of service worker’s secu-
rity and provide useful insights for web developers to implement
secure service workers in the future.

7 POTENTIAL DEFENSE SOLUTIONS
As the main cause of SW-XSS comes from the unsafe/unsanitized
usage of URL search parameters in service workers, themost natural
solution is to properly check how the parameters are used inside
the service workers. Nevertheless, we notice that the reason why
websites follow the bad practice in the first place is because the
service worker lacks a way to initially communicate with other
contexts while being installed. Note that the postMessage API itself
cannot be accessed until after the installation process is finished
and the service worker is successfully activated. Therefore, viable
options are to restrict URL search parameters of a service worker,
to provide another way for the document context or web server to
communicate with the service worker during the installation, or to
limit script inclusion in the SW context.

To restrict the URL search parameters of a service worker, we
suggest a method involving the manifest file, which is normally
already included in SW-enabled websites. While the worker-src di-
rective of the Content-Security-Policy (CSP) can limit the domains
and paths that can be registered as a service worker, our attack

utilizes the parameters of the same service worker file. According to
the CSP3 specification [7, 8], the path does not include the parame-
ters. Therefore, this CSP directive is currently not effective (unless a
new specification includes URL search parameters for source lists).
In any case, we notice that the Manifest used to have the service-
worker property that can tell the browser which service worker the
developers intend to install. Although this property has become
obsolete [9], we believe that such a method could help mitigate the
SW-XSS vulnerability as the intended URL search parameters can
be specified as the service worker src property. One downside of
this method is that the Manifest file is usually static, so the web
server may need to provide multiple versions of the Manifest files
if the URL search parameters needs to be varied for each visitor.
This leads to our second suggestion that is to use cookie, which can
provide more dynamic values.

Even though cookie is currently not accessible by a service
worker, there is an active development of the Cookie Store API,
which allows cookie access to a service worker. This can help web
servers communicate with the service worker during the instal-
lation. However, an attacker in the document context could still
launch SW-XSS attack by manipulating a service worker’s cookie.
Therefore, we suggest that service worker’s cookie should be iso-
lated (or at least give an option/flag) from the document’s cookie.
For instance, an additional SWOnly flag can limit access from the
document context but allows the Cookie Store API from the service
worker to access it. One downside of this method is that it may
require browsers to change their implementation to additionally
check the calling context of the cookie API (whether it is from the
service worker context). This could lead to an additional overhead.

Another feasible defense solution for the SW-XSS attack is to
limit script inclusion through the importScripts API. To this end,
web developers can utilize the CSP script-src directive in the service
worker to specify which domain names can be imported inside the
SW context. This can effectively prevent SW-XSS attackers from
importing malicious cross-domain files to hijack the service worker.
However, there are two downsides to this solution. First, it cannot
prevent SW-XSS attacks when the payload can be specified directly
through the URL search parameters because the attackers do not
need to use the importScripts API. This requires web developers
to also implement a defense for URL search parameters (i.e., by
using the Manifest as we suggested) to fully prevent SW-XSS at-
tacks. Second, CSP is not widely deployed [24] and can be hard to
configure correctly or can be bypassed [27]. Although specifying
the script-src for service workers is seemingly simple and effective,
we cannot guarantee that it is impossible for attackers to find a way
to bypass this directive in the future.

Lastly, we suggest a mitigation approach in addition to other
previously discussed solutions that could be helpful in the long
term. We notice that while the service worker gives better expe-
rience for users, it also gives attackers a new attack surface and
additional privileges. For example, web attacks used to happen
when a victim opens a malicious or compromised web page, but
now service workers can execute malicious payload off-screen and
enable several novel attacks [21, 26]. By simply visiting a website,
users are exposed to potential risks of a service worker. Therefore,
we suggest that web browsers could provide an indicator when
a website has a service worker installed (possibly similar to the

10

lock icon for HTTPS websites). This could help users be aware of
the risk when visiting an untrusted website and prompt them to
clear the website’s content or remove unnecessary service workers
more often. While this approach may not yield any result at this
moment, with increasing adoption of service worker, this approach
may prove to be useful. In any case, such an approach will need a
user study in the future to fully understand its effectiveness.

8 RELATEDWORK
Web Attack. Generally, web attacks can be categorized into either
client- or server-side. Saxena et al. and Mendoza et al. show that
on the server-side, a bad or malicious parameter controlled by the
attackers can potentially compromise users’ sensitive data [19, 22].
Our work, on the other hand, shares similarities in terms of how the
attackers can craft a malicious parameter to subvert the security.
However, SW-XSS does not involve the server-side and occurs in
the client-side instead.

Cross-Site Scripting attacks are one of the most infamous client-
side attacks. Stock et al. study the history of XSS attacks over a
decade and find that script inclusion or data access from cross-
domain plays a role in the website’s security, which is also in line
with Nikiforakis et al. findings [20, 24]. Our attack also utilizes
cross-domain file inclusion to launch the SW-XSS attack, thus we
share the same sentiment regarding this issue. In recent years, a
variant of XSS called DOM-XSS is emerging [17, 18, 23]. DOM-XSS
can be similar to our attack in a sense that it allows attackers to
execute remote code on the client-side. However, SW-XSS does not
execute the payload in the DOM but in the service worker unlike
DOM-XSS.

Service worker security is rarely studied in the past but is attract-
ing more attention. Lee et al. are possibly the first to discuss attacks
related to Progressive Web App and service worker [16]. However,
they assume that the vulnerable website runs in HTTP while our
threat model assumes full HTTPS. Papadopoulos et al. also ana-
lyze the impact of when a service worker runs a malicious code in
which the attackers can mine crypto-currency in the background
or control a botnet inside the victim’s browser [21]. Nevertheless,
Papadopoulos et al. assume that the target website and the service
worker are already malicious or compromised but does not discuss
a way to compromise a service worker. Watanabe et al. discuss how
an attacker can register a malicious service worker for a re-hosted
website to compromise other re-hosted websites of the same service
provider [26]. We look at the service worker in a different angle
and assume the service worker is benign while the goal is to com-
promise it instead of registering a malicious service worker. Stuart
Larsen discovers a bug allowing a vulnerable JSONP endpoint to be
used to register arbitrary code for a service worker [10]. Our work
shows an alternative way to compromise a benign service worker
through URL search parameters of a service worker.

JavaScript Analysis. Static analysis tools such as JSHint or
SonarJS can help identify generic coding issues [11, 12], but JavaScript
is an extremely dynamic language, so the report generated by static
analysis will contain a lot of false negative or false positive, and
they cannot detect sophisticated attacks such as XSS. Therefore,
most recent studies focus on utilizing dynamic analysis. Saxena et
al., Melicher et al., and Lekies et al. propose dynamic analysis tools

based on browser or JavaScript engine modification [17, 18, 22].
However, service worker development is still in an early stage and
its specification changes frequently. Tools that are based on browser
modification cannot naturally keep up with the changes, and they
do not take the service worker context into account. While Jueck-
stock et al. concurrently propose a light-weight in-browser dynamic
analysis tool that can monitor JavaScript’s native APIs usage and
quickly adapt into a new browser version, it cannot currently per-
form taint tracking [13]. Therefore, we implement SW-Scanner in
JavaScript, which provides taint tracking capability and can run in
any browser.

9 CONCLUSION
In this work, we found a growing problematic practice in SW-
enabled websites. These websites use URL search parameters during
their service worker’s installation and blindly trust those param-
eters. This allows attackers to feed a malicious parameter into a
benign service worker to compromise it. We termed this attack as
SW-XSS. We developed a tool called SW-Scanner to evaluate the
impact of SW-XSS in real-world websites. Our findings showed
40 websites to be vulnerable, wherein more than a hundred mil-
lion users could potentially be affected per month. We reported
our findings to all affected developers. With growing adoption and
forthcoming additional features of service workers, more vulner-
abilities or new types of attacks may emerge if web developers
neglect this problem. We hope that this work will provide useful
insights that can help minimize such outcomes in future.

ACKNOWLEDGMENTS
This material is based upon work supported by the NSF/VMware
Partnership on Software Defined Infrastructure as a Foundation for
Clean-Slate Computing Security (SDI-CSCS) program under Award
Title “S2OS: Enabling Infrastructure-Wide Programmable Security
with SDI” and No. 1700544. It is also supported in part by NSF Grant
No. 1617985, 1642129, and ONR Grant No. N00014-20-1-2734. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF, VMware and ONR.

REFERENCES
[1] [n.d.]. https://babeljs.io/.
[2] [n.d.]. https://maierfelix.github.io/Iroh/.
[3] [n.d.]. https://github.com/maierfelix/Iroh/blob/master/API.md.
[4] [n.d.]. https://www.similarweb.com/.
[5] [n.d.]. https://web.archive.org/.
[6] [n.d.]. https://www.openbugbounty.org/.
[7] [n.d.]. https://www.w3.org/TR/CSP3/#framework-directive-source-list.
[8] [n.d.]. https://tools.ietf.org/html/rfc3986#section-3.3.
[9] [n.d.]. https://developer.mozilla.org/en-US/docs/Web/Manifest/serviceworker.
[10] [n.d.]. https://c0nradsc0rner.com/2016/06/17/xss-persistence-using-jsonp-and-

serviceworkers/.
[11] [n.d.]. https://jshint.com/.
[12] [n.d.]. https://github.com/SonarSource/SonarJS.
[13] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser Mon-

itoring of JavaScript in the Wild. In Proceedings of the ACM Internet Measurement
Conference (IMC).

[14] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In 24th Annual Network and
Distributed System Security Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017. The Internet Society.

11

https://babeljs.io/
https://github.com/maierfelix/Iroh/blob/master/API.md
https://www.similarweb.com/
https://web.archive.org/
https://www.openbugbounty.org/
https://www.w3.org/TR/CSP3/#framework-directive-source-list
https://tools.ietf.org/html/rfc3986#section-3.3
https://developer.mozilla.org/en-US/docs/Web/Manifest/serviceworker
https://c0nradsc0rner.com/2016/06/17/xss-persistence-using-jsonp-and-serviceworkers/
https://c0nradsc0rner.com/2016/06/17/xss-persistence-using-jsonp-and-serviceworkers/

[15] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (NDSS 2019). https:
//doi.org/10.14722/ndss.2019.23386

[16] Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. Pride
and Prejudice in ProgressiveWeb Apps: Abusing Native App-like Features inWeb
Applications. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’18). ACM, New York, NY, USA, 1731–1746.
https://doi.org/10.1145/3243734.3243867

[17] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM, 1193–
1204. https://doi.org/10.1145/2508859.2516703

[18] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The Internet Soci-
ety. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/
ndss2018_07A-4_Melicher_paper.pdf

[19] Abner Mendoza and Guofei Gu. 2018. Mobile Application Web API Reconnais-
sance: Web-to-Mobile Inconsistencies & Vulnerabilities. In 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. IEEE, 756–769. https://doi.org/10.1109/SP.2018.00039

[20] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In the ACMConference on Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, Ting Yu, George Danezis, and Virgil D. Gligor (Eds.).
ACM, 736–747. https://doi.org/10.1145/2382196.2382274

[21] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos P.
Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis. 2019. Master of Web
Puppets: Abusing Web Browsers for Persistent and Stealthy Computation.
In 26th Annual Network and Distributed System Security Symposium, NDSS

2019, San Diego, California, USA, February 24-27, 2019. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/master-of-web-puppets-
abusing-web-browsers-for-persistent-and-stealthy-computation/

[22] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. 2010. FLAX:
Systematic Discovery of Client-side Validation Vulnerabilities in Rich Web Appli-
cations. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2010, San Diego, California, USA, 28th February - 3rd March 2010. The In-
ternet Society. https://www.ndss-symposium.org/ndss2010/flax-systematic-
discovery-client-side-validation-vulnerabilities-rich-web-applications

[23] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t
Trust The Locals: Investigating the Prevalence of Persistent Client-Side
Cross-Site Scripting in the Wild. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society. https://www.ndss-symposium.org/ndss-paper/dont-trust-
the-locals-investigating-the-prevalence-of-persistent-client-side-cross-site-
scripting-in-the-wild/

[24] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. 2017. How the
Web Tangled Itself: Uncovering the History of Client-Side Web (In)Security. In
26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017., Engin Kirda and Thomas Ristenpart (Eds.). USENIX Associa-
tion, 971–987. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/stock

[25] Tung Tran, Riccardo Pelizzi, and R. Sekar. 2015. JaTE: Transparent and Efficient
JavaScript Confinement. In Proceedings of the 31st Annual Computer Security
Applications Conference (ACSAC 2015). ACM, New York, NY, USA, 151–160. https:
//doi.org/10.1145/2818000.2818019

[26] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Tatsuya Mori. 2020.
Melting Pot of Origins: Compromising the IntermediaryWeb Services that Rehost
Websites.

[27] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016.
CSP Is Dead, Long Live CSP! On the Insecurity of Whitelists and the Future of
Content Security Policy. In Proceedings of the 23rd ACM Conference on Computer
and Communications Security. Vienna, Austria.

[28] Y. Zhou and D. Evans. 2015. Understanding and Monitoring Embedded Web
Scripts. In Proc. IEEE Symp. Security and Privacy. 850–865. https://doi.org/10.
1109/SP.2015.57

12

https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1145/3243734.3243867
https://doi.org/10.1145/2508859.2516703
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_07A-4_Melicher_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_07A-4_Melicher_paper.pdf
https://doi.org/10.1109/SP.2018.00039
https://doi.org/10.1145/2382196.2382274
https://www.ndss-symposium.org/ndss-paper/master-of-web-puppets-abusing-web-browsers-for-persistent-and-stealthy-computation/
https://www.ndss-symposium.org/ndss-paper/master-of-web-puppets-abusing-web-browsers-for-persistent-and-stealthy-computation/
https://www.ndss-symposium.org/ndss2010/flax-systematic-discovery-client-side-validation-vulnerabilities-rich-web-applications
https://www.ndss-symposium.org/ndss2010/flax-systematic-discovery-client-side-validation-vulnerabilities-rich-web-applications
https://www.ndss-symposium.org/ndss-paper/dont-trust-the-locals-investigating-the-prevalence-of-persistent-client-side-cross-site-scripting-in-the-wild/
https://www.ndss-symposium.org/ndss-paper/dont-trust-the-locals-investigating-the-prevalence-of-persistent-client-side-cross-site-scripting-in-the-wild/
https://www.ndss-symposium.org/ndss-paper/dont-trust-the-locals-investigating-the-prevalence-of-persistent-client-side-cross-site-scripting-in-the-wild/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/stock
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/stock
https://doi.org/10.1145/2818000.2818019
https://doi.org/10.1145/2818000.2818019
https://doi.org/10.1109/SP.2015.57
https://doi.org/10.1109/SP.2015.57

	Abstract
	1 Introduction
	2 Background
	2.1 Web Workers
	2.2 Service Worker
	2.3 Service Worker Lifecycle
	2.4 Cross-Site Scripting

	3 Threat Model
	4 SW-XSS Attack
	4.1 Motivation
	4.2 Challenges
	4.3 Hijacking Service Worker
	4.4 SW-XSS in comparison with existing XSS

	5 Detecting SW-XSS in the Wild
	5.1 Code Instrumenter Module
	5.2 Code Evaluation Module

	6 Evaluation
	6.1 Data Collection and Overall Statistics
	6.2 SW-XSS Vulnerabilities in the Wild
	6.3 Service Worker Freshness
	6.4 Case Study

	7 Potential Defense Solutions
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

