
Computer Networks 241 (2024) 110203

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Review article

Enhancing security in SDN: Systematizing attacks and defenses from a
penetration perspective
Jinwoo Kim a,∗, Minjae Seo b, Seungsoo Lee c, Jaehyun Nam d, Vinod Yegneswaran e,
Phillip Porras e, Guofei Gu f, Seungwon Shin g

a School of Software, Kwangwoon University, Seoul, 01897, South Korea
b ETRI, Daejeon, 34129, South Korea
c Department of Computer Science & Engineering, Incheon National University, Incheon, 22012, South Korea
d Department of Computer Engineering, Dankook University, Yongin, Gyeonggi-do, 16890, South Korea
e SRI International, Menlo Park, CA, 94025, USA
f Texas A&M University, College Station, TX, 77843, USA
g School of Electrical Engineering, KAIST, Daejeon, 34141, South Korea

A R T I C L E I N F O

Keywords:
Software-Defined Networking (SDN)
SDN Security
Survey
Systematization of Knowledge (SoK)

A B S T R A C T

Over the past 15 years, Software-Defined Networking (SDN) has garnered widespread support in research
and industry due to its open and programmable nature. This paradigm enables various stakeholders, such
as researchers, practitioners, and developers, to innovate networking services using robust APIs and a global
network view, eliminating dependence on vendor-specific control planes. However, the adaptable architecture
of SDN has introduced numerous security challenges not present in traditional network environments. While
several surveys have highlighted existing attacks, there is a notable absence of a systematic penetration
perspective, essential for understanding the attacks and their origins. This paper seeks to analyze prior literature
that has exposed instances of attacks in SDN, examining their vulnerabilities, penetration routes, and root
causes. Furthermore, we offer a thorough and comprehensive discussion of the underlying issues associated
with these attacks, presenting defenses proposed by researchers to mitigate them and analyzing how the root
causes are addressed. We also explore how our survey can assist practitioners in preparing suitable defenses
by providing insights into penetration routes. Through this study, our goal is to shed light on existing security
issues within the current SDN architecture, prompting a reassessment of various security problems and offering
a guideline for future research in SDN security.
1. Introduction

Software-Defined Networking (SDN) has emerged as a dominant
networking paradigm over the last 15 years, revolutionizing traditional
network infrastructure. Initially introduced by the 4D project [1], the
concept of decoupling control and data planes has garnered significant
attention from researchers seeking to overcome the limitations of con-
ventional networks that hindered innovation. The centralized control
plane, known as an SDN controller, has enabled unprecedented advance-
ments by providing programmable interfaces (e.g., OpenFlow [2]),
impactful applications (e.g., FlowVisor [3]), and flexible components
(e.g., Open vSwitch [4]). As a result, SDN has gained widespread
adoption, with extensive studies and deployments ranging from campus
networks [5] to large-scale networks such as WANs [6] and data
centers [7,8].

∗ Corresponding author.
E-mail addresses: jinwookim@kw.ac.kr (J. Kim), ms4060@etri.re.kr (M. Seo), seungsoo@inu.ac.kr (S. Lee), jaehyun.nam@dankook.ac.kr (J. Nam),

vinod@csl.sri.com (V. Yegneswaran), porras@csl.sri.com (P. Porras), guofei@cse.tamu.edu (G. Gu), claude@kaist.ac.kr (S. Shin).

Furthermore, SDN has garnered significant attention in the realm of
network security, presenting several advantages, including heightened
security capabilities. The centralized control offered by an SDN con-
troller empowers network operators to craft native security systems sur-
passing the efficacy of traditional middle-box-based approaches. Vari-
ous techniques for early detection and proactive mitigation have been
proposed by researchers [9], demonstrating the potential of SDN-based
security systems. These techniques span areas such as botnet detec-
tion [10], DDoS mitigation [11], and network forensics [12]. Moreover,
SDN seamlessly integrates with existing middle-boxes through service
chain context, ensuring compatibility with legacy markets [13,14].

Nevertheless, it is crucial to recognize that the novel architecture
of SDN introduces potential vulnerabilities that attackers may exploit
across all SDN components. As depicted in Fig. 1, SDN transforms the
vailable online 23 January 2024
389-1286/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2024.110203
Received 24 July 2023; Received in revised form 18 January 2024; Accepted 19 Ja
nuary 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:jinwookim@kw.ac.kr
mailto:ms4060@etri.re.kr
mailto:seungsoo@inu.ac.kr
mailto:jaehyun.nam@dankook.ac.kr
mailto:vinod@csl.sri.com
mailto:porras@csl.sri.com
mailto:guofei@cse.tamu.edu
mailto:claude@kaist.ac.kr
https://doi.org/10.1016/j.comnet.2024.110203
https://doi.org/10.1016/j.comnet.2024.110203
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110203&domain=pdf

Computer Networks 241 (2024) 110203J. Kim et al.
Fig. 1. An illustration of the layered SDN architecture: decoupling the control and data
planes from proprietary network devices.

rigid architecture of proprietary devices into multiple layers that can
be extended by various stakeholders. In this context, the open-source
community plays a significant role in shaping the specifications and
implementations of diverse SDN layers and interfaces. While this collab-
orative approach fosters a variety of contributions towards innovative
applications, flexible APIs, and practical use cases, it also results in a
complex SDN architecture, posing challenges in tracking internal event
flows. This complexity, in turn, creates opportunities for attackers to
establish penetration routes through any SDN component.

As a result, attackers have successfully infiltrated various layers that
were previously inaccessible, leading to heightened security risks. Par-
ticularly noteworthy is the absence of a trusted ecosystem for applica-
tion developers and operators, which has facilitated the proliferation of
malicious applications in application markets [15–17]. These malicious
applications carry out harmful actions against controllers and switches.
Additionally, the centralized architecture of the SDN controller, op-
erating as a general network operating system (NOS), is susceptible
to straightforward application-level penetration [18–20]. Furthermore,
the centralized control plane is vulnerable to saturation attacks through
the exploitation of switch-to-controller penetration [21–23]. Numerous
attacks have been reported; hence, it is imperative for practitioners to
acknowledge these vulnerabilities and work towards developing secure
SDN environments.

This paper aims to comprehensively investigate the security im-
plications of the SDN architecture, focusing on the penetration of SDN
layers by attackers and corresponding defense strategies employed by de-
fenders. To accomplish this objective, we conduct an extensive survey of
reputable research literature from networks, security, and systems con-
ferences and journals. Through our analysis, we propose a taxonomy
for categorizing SDN attacks, considering their penetration direction
and presenting their root causes, affected components, and common
attack types. Additionally, we evaluate existing countermeasures rec-
ommended by researchers to mitigate these attacks. By conducting a
thorough examination of the identified attacks and defenses, we shed
light on the architectural vulnerabilities present in SDN and identify ar-
eas that require further attention from the security research community
in future studies.

Numerous surveys have been conducted to systematically organize
and elucidate the various aspects of security in SDN and its associated
attacks [24–36]. These existing surveys predominantly focus on cate-
gorizing attacks based on layers, as discussed in Section 3, including a
detailed comparison with our work and existing surveys. In contrast,
our paper introduces a novel taxonomy termed as the penetration route
which provides a granular analysis of the attack vectors, tracing the
trajectory of an attacker’s infiltration from the source to the targeted
component within the SDN architecture. The significance of this con-
ceptual framework is twofold. Firstly, it offers a strategic advantage to
network defenders by elucidating the specific layers and components
that are particularly susceptible to exploitation. This understanding is
crucial as it enables defenders to not only pinpoint critical vulnera-
bilities but also to tailor their defensive strategies more effectively,
ensuring a robust security posture. Secondly, our penetration route
2

taxonomy serves as a predictive tool, enabling defenders to foresee and
prepare for potential attacks on targeted layers and components that,
thus far, remain unexploited.
Contributions. Our contributions are outlined as follows:

• Introduction of a novel attack taxonomy from a penetration per-
spective, derived from comprehensive reviews of previous litera-
ture.

• Systematic classification of literature related to SDN attacks and
defenses based on the established taxonomy.

• In-depth analysis of existing attacks and defenses, including ex-
amination of penetration routes, root causes, and SDN compo-
nents.

• Thorough discussion providing insights for each type of attack
and defense, along with use cases and directions for future re-
search.

Organization. The remainder of this paper is structured as follows:
Section 2 provides an overview of SDN. Section 3 examines previous
surveys on SDN security and discusses their limitations. Section 4
introduces our taxonomy for categorizing existing literature. Section 5
and Section 6 classify SDN attacks and defenses, respectively, based on
the proposed taxonomy. In Section 7, we discuss potential use cases of
the penetration routes we present in this paper. In Section 8, we explore
future research directions for SDN security. Finally, Section 9 presents
the conclusion of our paper.

2. Background

In this section, we provide background information on Software-
Defined Networking (SDN) and offer a brief introduction to its archi-
tecture, including a discussion on the trust and threat model.

2.1. What is Software-Defined Networking (SDN)?

In traditional networks, the insertion of new functions into devices
is inherently challenging due to the embedded nature of the con-
trol plane and data plane within proprietary network devices [2]. To
address this fundamental issue, Software-Defined Networking (SDN) in-
troduces a new paradigm that underscores the decoupling of the control
plane from the data plane. This separation is achieved through a log-
ically centralized controller operated on high-performance commodity
hardware.

Fig. 2 illustrates the overall architecture of SDN. The application
layer hosts various SDN applications (or apps) designed for network
management. In the middle, the control layer comprises one or multiple
SDN controllers responsible for controlling the underlying forwarding
devices and managing the centralized network view. At the bottom,
the infrastructure layer consists of distributed forwarding devices that
directly handle incoming packets. Specifically, the control layer and
the infrastructure layer communicate through the control channel, while
hosts exchange packets with switches through the data channel. In
addition to these channels, the controller features three distinct types
of interfaces: (i) the northbound interface (NBI) for communication with
applications, (ii) the east/westbound interface for state synchronization
with neighboring controllers, and (iii) the southbound interface (SBI) for
switch management.

2.2. SDN controller and application

SDN controllers on the control layer are commonly referred to as
network operating systems (NOS). This nomenclature arises from the
fact that advanced controllers typically incorporate fundamental con-
trol software essential for operating and managing an entire network.
Additionally, they offer a comprehensive network view for SDN apps
by abstracting away intricate control logic details. Controllers typically

Computer Networks 241 (2024) 110203J. Kim et al.
Fig. 2. SDN layers, components, channels, and interfaces.
Fig. 3. The internal architecture of an SDN controller and our threat model.
encompass core modules and interfaces essential for tasks such as
topology detection and traffic management, as depicted in Fig. 3.

Many SDN controllers, including NOX [37], Maestro [38], Onix [39],
Floodlight [40], Beacon [41], ONOS [42], and OpenDaylight [43],
typically consist of four modules equipped with flexible APIs to en-
hance programmability. These modules encompass (i) a topology man-
ager featuring link discovery and host tracking services, (ii) a switch
manager responsible for maintaining up-to-date topology information
through the discovery of network elements, (iii) a storage service
securely storing all essential network information and providing ac-
cessibility to SDN applications, and (iv) a flow manager defining and
modifying flow rules in switches, utilizing the southbound interface.
By incorporating these four modules, operators can develop a variety of
network applications at a reduced cost and optimize them in alignment
with their specific policies.

2.3. OpenFlow and SDN switch

The most widely used southbound interface between the control
layer and the infrastructure layer is OpenFlow [44]. It defines com-
mands and behaviors that enable the controller to perform fine-grained
and dynamic policy enforcement in OpenFlow-enabled SDN switches.
The switch maintains a set of flow tables, each managing a set of flow
3

rules. When an incoming packet arrives at the switch without a match-
ing flow rule entry, the switch sends a PACKET_IN message, providing
partial information about the packet to the controller. Subsequently,
the controller and its SDN apps decide how to handle the packet and
send a flow rule to the switch through a FLOW_MOD message.

2.4. Trust and threat model in SDN

Typically, the SDN controller holds a central role, widely recognized
as the pivotal component, leading to the establishment of a trust
boundary around the control layer. The application layer, however, is
characterized by a relatively weaker level of trust due to the potential
for applications to leverage the controller’s capabilities via northbound
APIs. In contrast, the infrastructure layer commands a higher degree
of trust, primarily attributed to the constrained capabilities of SDN
switches compared to their legacy counterparts.

In this context, the commonly adopted threat model in SDN assumes
the presence of (i) malicious applications in the application layer, (ii)
malicious switches, and (iii) malicious hosts in the infrastructure layer
(see Fig. 3). As discussed later, this is possible due to various reasons,
such as downloading compromised applications and switch firmware
or host vulnerabilities.

Computer Networks 241 (2024) 110203J. Kim et al.
Table 1
Previous surveys and their limitations.
Previous surveys Main focus Focused layers and

interfaces
Limitations Unveiling

root
cause

Analysis
of pene-
tration
route

Kreutz et al. [24] (2013) Overall security
issues in SDN

Application and
control layer

Narrow focus on
security issues
regarding trust between
SDN applications and
controllers.

✗ ✗

Scott et al. [25] (2015) Overall security
issues in SDN

Application and
control layer

Limited coverage of
attack types, providing
a limited perspective
on the SDN security.

✗ ✗

Ahmad et al. [26] (2015) Overall security
issues in SDN

Application, control,
and infrastructure
layer

Lack of detailed
descriptions and
analyses of attacks

✗ ✗

Alsmadi et al. [27] (2015) Overall security
issues in SDN

Application and
control layer

Inadequate definition of
defense criteria limiting
the research’s scope for
practical applications.

✗ ✗

Yan et al. [28] (2015) DDoS attacks in
SDN and cloud
computing
environments

Application and
control layer

Constrained analysis
focusing solely on a
single DDoS attack and
its mitigation in a
cloud computing
environment.

✗ ✗

Khan et al. [29] (2016) Analysis of SDN
topology
discovery
method and its
threat

Application layer,
control layer, and
interfaces

Potential neglect of
important security issue
dimensions due to the
focus on a specific SDN
topology discovery
method.

✗ ✗

Yoon et al. [30] (2017) Overall security
issues in SDN
and attack
demonstration

Application, control,
and infrastructure
layer

Limited in-depth
discussion for attack
trend and root causes.

✓ ✗

Shaghaghi et al. [31] (2020) Security issues in
SDN data plane

Infrastructure layer Limited examination of
attack and mitigation
scenarios, solely
focused on the SDN
data plane.

✗ ✗

Chica et al. [32] (2020) Overall security
issues in SDN

Application layer,
control layer,
infrastructure layer,
and interfaces

Lack of detail in the
study’s proposed
classification of attack
criteria and taxonomy.

✗ ✗

Rauf et al. [33] (2021) Northbound
interface security
issues in SDN

Northbound
interface

Narrow focus on
northbound interface
vulnerabilities limiting
the perspective on SDN
security.

✗ ✗

Jimenez et al. [34] (2021) Defense solutions
for SDN layers

Application layer,
control layer,
infrastructure layer,
and interfaces

Lack of an attack
taxonomy.

✗ ✗

Rahouti et al. [35] (2022) Overall security
issues in SDN

Application layer,
control layer, and
infrastructure layer

Lack of root cause
analysis.

✗ ✗

Melis et al. [36] (2023) Utilizing
quantitative
metrics and
qualitative
insights to
identify key
issues in SDN

Application layer,
control layer,
infrastructure layer,
and interfaces

Lack of in-depth
analysis associated with
SDN security.

✗ ✗

Our work Overall security
issues in SDN

Application layer,
control layer,
infrastructure layer,
and interfaces

– ✓ ✓
4

Computer Networks 241 (2024) 110203J. Kim et al.

t
s

c
i
i
e
a
S
u
s
e

a
a
l
i
e
g
I
Y
n
I
i
s

e
S
f
e
S
t

l
t
f
i
e
r
c
m
a
e
a
w
i
t
g

4

c
b
r
o

R

.

3. Related work

Over the years, numerous studies have conducted surveys and anal-
yses on the security aspects of SDN. One influential study that advanced
the understanding of SDN security is the work by Kreutz et al. [24],
published in the 2013 HotSDN (Hot Topics in Software Defined Net-
working) conference.1 This study played a crucial role by being the first
o introduce seven potential threat vectors specific to SDN, contributing
ignificantly to the early development of the field.

In the realm of SDN, several comprehensive surveys have been
onducted, each proposing its own taxonomy and providing valuable
nsights. Scott et al. [25] conducted an analysis of SDN vulnerabil-
ties, categorizing them based on different types of attacks. Rahouti
t al. [35] reviewed previous literature and classified it using various
ttack taxonomies. Chica et al. [32] analyzed overall security issues in
DN by surveying known SDN attacks and defenses. Melis et al. [36]
tilized quantitative metrics associated with the literature to derive in-
ightful findings. These surveys have made significant contributions to
nhancing our understanding and advancing the field of SDN security.

In addition to the aforementioned surveys, several works have
pplied existing standard or well-known threat models to analyze SDN
ttacks and defenses. Ahmad et al. [26] examined the security so-
utions for SDN based on ITU-T (ITU Telecommunication Standard-
zation Sector) recommendations. Alsmadi et al. [27] and Jimenez
t al. [34] surveyed the threats and defense solutions for SDN, cate-
orizing them using the STRIDE (Spoofing, Tampering, Repudiation,
nformation disclosure, Denial of service, Elevation of privilege) model.
oon et al. [30] conducted a survey of known SDN attacks, identified
ew vulnerabilities, and mapped them to the CIA (Confidentiality,
ntegrity, Availability) model. These works provide valuable insights
nto the application of established threat models to understand SDN
ecurity challenges.

Furthermore, certain works focused on specific environments or lay-
rs of SDN to analyze how SDN affects them. Khan et al. [29] analyzed
DN topology discovery and its associated threats. Rauf et al. [33]
ocused on the security issues of northbound interfaces in SDN. Yan
t al. [28] analyzed DDoS (Distributed Denial-of-Service) attacks in
DN and cloud computing environments. Shaghaghi et al. [31] revisited
he security issues in the infrastructure layer.

Despite these efforts, previous surveys on SDN security have been
imited in their scope, hindering a comprehensive understanding of
he field. As shown in Table 1, these limitations include a narrow
ocus on security issues between SDN applications and controllers,
nadequate descriptions and analyses of attacks, insufficient criteria for
valuating attacks and defenses, absence of an attack taxonomy and
oot cause analysis, and limited in-depth analysis of SDN security. In
ontrast, our study represents a significant advancement by addressing the
ajor root causes of SDN attacks, proposing a new taxonomy for attacks
nd defenses, and providing thorough analysis. Specifically, we classify
xisting attacks vertically across layers, clearly identifying the source
nd target components involved in a penetration route. Additionally,
e classify existing defenses horizontally, enabling us to understand the

mplementation of defenses at each layer. These approaches contribute
o a more comprehensive understanding of SDN security and bridge the
aps left by previous research efforts.

. Systematization taxonomy

This section introduces our taxonomy to classify existing attacks and
ountermeasures. For each criterion, we elaborate on the key reasons
ehind choosing them with the discussion of security challenges. We
efer the readers to Fig. 3 for a better understanding of the threat model
f taxonomy in the SDN architecture.

1 HotSDN is considered the predecessor of SOSR (Symposium on SDN
esearch).
5

4.1. Penetration route

We observe that typical attacks in SDN require penetrating SDN
architecture internals. We model this concept by defining a penetration
route where an attacker’s message or event is propagated. Note that
in Section 5, we classify attacks based on five penetration directions
that are derived from various penetration routes. A typical penetration
route needs at least one source to affect a target through a sequence of
the following components and interfaces:

4.1.1. Application
Malicious SDN applications have been a popular stepping stone to

penetrate SDN controllers and switches [15,18–20,45,46], similar to
the way an Android malware infiltrates a user’s mobile device [47].

4.1.2. Northbound Interface (NBI)
We scope the NBIs into all accessible interfaces of a controller

from SDN applications, such as system APIs (e.g., system calls, Java
native methods), controller core services [30,48], peer application
services [45,48], and REST APIs [49].

4.1.3. Controller
An SDN controller is the most important target for attackers and

defenders, and thus it can be targeted by any other components.

4.1.4. Southbound Interface (SBI)
A southbound interface is a boundary where a controller and

switches communicate with each other. So, it can be abused to affect
controller and switch operation.

4.1.5. Switch
Switches can act as either a reflector that sends control packets

invoked by hosts or an attack source if they are controlled by an
attacker. For example, it is widely known that commodity switches can
be compromised due to switch firmware vulnerabilities [50,51].

4.1.6. Switch interface
It refers to the communication point between hosts and SDN switches

This is the only way to inject malicious packets from compromised
hosts.

4.1.7. Host
Hosts can be a variety of entities, such as physical machines, VMs

(Virtual Machines), and even containers that participate in the target
SDN network. An attacker can compromise one of those hosts to use
them as an attack source.

4.2. Attack type

In this paper, we categorize six types of attacks that are commonly
found in literature.

4.2.1. Denial of service (DoS)
It refers to all circumstances when either a controller or switch

is unavailable or its performance is significantly downgraded due to
attacks. As those components are crucial in operating SDN architecture,
many related attacks have been proposed.

4.2.2. Information leakage
Maintaining the confidentiality of SDN control-plane information,

encompassing policies, configurations, and architecture, is of utmost
importance. Nevertheless, there exists a potential risk of data leakage
through the measurement of metadata, particularly concerning latency

in communication on the control channel.

Computer Networks 241 (2024) 110203J. Kim et al.

a
l
k

4

S
e
t
h

4

i
o
f
t
c

4

a
o
a
w

4

c
T
t
n
a

4

a
t
c
m
b

4

t
t
s

4

o
a
t

4.2.3. Protocol abusing
This attack involves the exploitation of protocol features within SDN

for malicious purposes. For instance, a malicious application could dis-
rupt communication between the controller core modules and other ap-
plications. Similarly, a malicious switch could inject harmful payloads
into control packets.

4.2.4. Man-in-the-middle
The initial SDN architecture is designed under the assumption that

components are trustworthy. However, a compromised application,
switch, or host could perform man-in-the-middle attacks between com-
munications to manipulate, drop, or inject messages.

4.2.5. Policy evasion
This attack refers to a situation in which a malicious application or

host violates a security policy. Such policies can encompass both con-
trol plane policies and configurations, as well as data plane forwarding
behavior.

4.2.6. Storage poisoning
Due to the lack of filtering or access control, SDN’s network storage

is susceptible to storage poisoning attacks, where malicious data is
injected, compromising the controller’s decision-making process.

4.3. Defense type

To defend SDN components from attacks and remove their vul-
nerabilities, diverse countermeasures have been proposed so far. We
classify them into the following six defense types. Note that in Sec-
tion 6, we also categorize those defenses into four layers: application,
control, infrastructure, and cross-layer. This classification is based on
whether defenses are implemented within a single layer or require the
collaboration of multiple layers.

4.3.1. Authentication
This defense strategy focuses on implementing a mechanism to

identify and establish trust in components within the SDN architecture.
One example of this is the deployment of a public key infrastructure
(PKI), which enables the secure exchange of cryptographic keys and
certificates.

4.3.2. Access control
This defense refers to the design and implementation of an access

control system for SDN. For example, a permission system is suitable for
the application and infrastructure layer where many untrusted entities
like third-party applications or unknown hosts reside.

4.3.3. Patch/extension
This defense strategy involves extending the prior architecture,

implementations, and functionality of SDN components with additional
features. For instance, it includes the incorporation of security modules
into existing controllers or the development of new controllers that are
architecturally secure.

4.3.4. Testing
This defense strategy focuses on identifying vulnerabilities and

flaws within the implementation of SDN applications, controllers, or
switches. Since the software-defined logic forms the basis of SDN
operations, the reliability of the system greatly relies on the absence
of any flaws in the implementation of SDN components.

4.3.5. Program analysis
This defense examines program behavior to find flaws that abuse

security-sensitive APIs or violate network policies (invariant). Prior
studies have utilized diverse program analysis techniques, such as
static analysis looking into control flows or dynamic instrumentation
6

investigating execution traces. t
4.3.6. Monitoring
This defense strategy involves inspecting the behavior of SDN com-

ponents and detecting abnormal cases that violate network policies.
It aims to identify and respond to deviations from expected behav-
ior within the SDN system, enabling the detection and prevention of
potential security breaches.

4.4. Root cause

The root cause aims to analyze why the proposed attack scenarios
re feasible within the SDN components. From our survey of prior
iterature, we classify 9 major root causes that have been regarded as
ey problems that security researchers have paid great attention to.

.4.1. Lack of NBI authorization
This criterion indicates the absence of an authorization measure in

DN northbound interfaces (NBI). Despite their critical impact on the
ntire network operations in case of misuse by malicious applications,
hey are not properly protected from malicious intents [18–20] or
uman errors [49].

.4.2. Lack of SBI authorization
The southbound interface (SBI) is a critical boundary that can

mmediately affect network forwarding behavior on the data plane
r visibility on the control plane. Given that, it should be secured
rom malicious actions. However, there is no proper authorization
o prevent abuse by a malicious component, creating more security
oncerns [17,52].

.4.3. Lack of control event integrity
Most SDN controllers maintain a service chain that dictates how

n internal control event is processed by which order of applications
r core modules [30]. When processed, their integrity should be guar-
nteed to preserve the original messages or finish the chain sequence
ithout unintended modifications.

.4.4. Lack of control message integrity
An SDN controller and network devices are connected via a control

hannel through which some critical messages will be sent/received.
hus, a secure control channel (e.g., SSL/TLS) is recommended [44]
o avoid such a situation. However, it is possible that operators do
ot employ SSL/TLS due to its performance issue, giving an attacker
chance to monitor and manipulate control messages [53].

.4.5. Lack of application authentication
It is clear that verifying the reliability of an application developer is

n indispensable option in maintaining a safe and secure SDN ecosys-
em. However, in our analysis, we recognize that most popular SDN
ontrollers do not support application authentication, implying that a
alicious application, which is disguised as a benign application, could

e installed without any restrictions.

.4.6. Lack of switch and host authentication
A southbound interface, such as OpenFlow, does not specify any au-

hentication measure when establishing control channels from switches
o a controller [44], and contemporary SDN controllers also do not
upport data-plane authentication for switches and hosts.

.4.7. Lack of controller resource control
The design philosophy of an SDN controller is alike the traditional

perating system in that both need to manage a variety of user-level
pplications concurrently executed with shared resources. However,
he lack of this necessary element in several ancestor controllers led

o harmful attack scenarios [18,54].

Computer Networks 241 (2024) 110203J. Kim et al.
4.4.8. Side channel
The central principle of SDN’s design philosophy is to separate

the control plane (i.e., controller) from the data plane, necessitating
a communication channel between them. However, this communica-
tion channel introduces a novel attack surface. For instance, even an
attacker without direct access to the channel can still exploit it to gather
confidential information from the SDN control plane, including network
policies, through fingerprinting techniques [55,56].

4.4.9. Implementation flaw
While there is a clear standard reference for SDN (e.g., Open-

Flow [44]), it does not mean that the implementations of such refer-
ences are always clean, with no bugs or critical errors. In this con-
text, researchers have investigated if SDN implementations (e.g., open-
source SDN controllers) include any critical program bugs or holes, and
they have revealed critical implementation problems that can cause
serious security issues [49].

5. SDN attack classification

In this section, we present major categories of attacks and vul-
nerabilities that have been discussed in academia. Table 2 shows the
summary of systematization for disclosed SDN attacks, enumerated
with five penetration directions.2 Finally, we summarize our findings
and insights for each.

5.1. Application to controller

Rationale behind the penetration route. By default, SDN applications
have access to all northbound interfaces of a controller. This design
decision is based on the assumption that these applications will not
possess malicious intent or contain critical bugs. However, in practical
scenarios, it is impossible to provide complete guarantees regarding
the behavior of SDN applications. Most application-to-controller pen-
etration begins with the installation of a malicious application on a
controller (downloaded from a third-party app store or deployed by
a network operator). If succeeds, it invokes APIs (e.g., REST APIs,
Java/Python APIs) supported by northbound interfaces of the con-
troller, allowing the malicious application to perform harmful actions.
For example, by invoking ApplicationAdminService in ONOS,
the malicious application can activate and deactivate other applications
running on the controller. While this is a relatively simple route, its
impact is powerful as discussed in the following sections.

5.1.1. Denial of service
Exploiting northbound interfaces can have detrimental effects on

controller functionality and network performance. Malicious appli-
cations can abuse system APIs directly associated with the runtime
operation of the controller, leading to various issues. For instance,
Shin et al. [18] demonstrate the possibility of unauthorized termination
of Java-based SDN controllers (such as Floodlight, ONOS, and Open-
Daylight) by invoking the System.exit() function (Fig. 4). Yoon
et al. [30] show that manipulating time variables can result in the
disconnection of switches from the controller.

Furthermore, a malicious application can illicitly remove link in-
formation from storage, impeding the controller’s ability to determine
correct routing paths [18]. Additionally, certain APIs can be exploited
to exhaust system resources. Shin et al. [18] demonstrate that a ma-
licious application can allocate large-sized data structures to deplete
controller memory. AIM-SDN [57] reveals the possibility of flooding a
controller’s storage by generating numerous configuration entries.

2 Note that is the source, is the middle, and is the target
component of a penetration route in Table 2.
7

Fig. 4. An illustration of system API abusing and corrupted flow rule injection
attacks in application-to-controller penetration. The malicious application can invoke
System.exit() to terminate the controller modules or inject a corrupted rule into
the storage.

Moreover, a malicious application can manipulate critical configu-
rations within a controller. For example, the fwd app [84] in the ONOS
controller allows operators to configure the packet_out_only op-
tion, which enables packet forwarding without rule installation. How-
ever, this option can be misused to unnecessarily redirect all packets to
the controller, significantly degrading network performance [19,58].

5.1.2. Storage poisoning
Malicious applications can exploit northbound interfaces to com-

promise controller storage, leading to network malfunctions (Fig. 4).
Dixit et al. [57] introduce a vulnerability where a malicious application
directly corrupts a storage entry using northbound interfaces, resulting
in a controller crash. They show that if an application injects many
flow rules into a controller, expired flows end up flooding the controller
storage even if a timeout is set (CVE-2017-1000411). This vulnera-
bility is so-called semantic gap, indicating that the controller does not
properly synchronize states (e.g., flow rules) with those in a switch.
It causes other critical bugs that are reported to the vendor as well
(CVE-2017-1000406, CVE-2018-1078).

Lee et al. [49] present a similar vulnerability with the incorrect
rule installation via REST APIs due to implementation gaps between
controllers and switches. For example, if an operator creates a flow rule
that utilizes the tcp_dst match field without specifying the prerequi-
site ip_proto match field for TCP headers, the Floodlight SDN con-
troller updates the storage with the rule. However, the switch rejects
the rule due to the missing prerequisite field. Consequently, the Flood-
light controller retains the rule in its storage, causing an infinite se-
quence of unsuccessful synchronization attempts and significantly con-
suming controller resources (CVE-2019-1010252). Similar vulnerabili-
ties were reported to the vendor as well (i.e., CVE-2019-1010249, CVE-
2019-1010250, CVE-2020-18683, CVE-2020-18684, CVE-2020-18685).

Moreover, a malicious application can poison existing storage en-
tries (Fig. 5). Most SDN controllers operate as event-driven systems,
notifying applications when specific events occur and maintaining an
event list. Compromising this list can hinder the proper reception of
subscribed events by applications [19,30,58]. Similarly, a malicious
application can remove configurations to trigger unexpected bugs.

Additionally, attackers can inject a rootkit that remains hidden and
continues performing malicious actions. Ropke et al. [20] demonstrate
that an SDN rootkit application can remove its app ID from controller
storage. Subsequently, the rootkit establishes a covert channel to steal
sensitive information, such as configurations, from the target controller.

Computer Networks 241 (2024) 110203J. Kim et al.
Table 2
Systematization of SDN attacks by penetration direction. (✓ Root Cause Source Middle Target)
Direction Type Attack Root cause Penetration route

La
ck

of
N

BI
au

th
or

iz
at

io
n

La
ck

of
SB

I
au

th
or

iz
at

io
n

La
ck

of
co

nt
ro

l
ev

en
t

in
te

gr
ity

La
ck

of
co

nt
ro

l
m

es
sa

ge
in

te
gr

ity

La
ck

of
ap

pl
ic

at
io

n
au

th
en

tic
at

io
n

La
ck

of
sw

itc
h/

ho
st

au
th

en
tic

at
io

n

La
ck

of
co

nt
ro

lle
r

re
so

ur
ce

co
nt

ro
l

Si
de

ch
an

ne
l

Im
pl

em
en

ta
tio

n
fla

w

Ap
pl

ic
at

io
n

N
or

th
bo

un
d

in
te

rf
ac

e

Co
nt

ro
lle

r

So
ut

hb
ou

nd
in

te
rf

ac
e

Sw
itc

h

Sw
itc

h
in

te
rf

ac
e

H
os

t

Application to
Controller
(Section 5.1)

Denial of Service

System API Abusing
[18,30]

✓

Controller Resource Exhaustion
[18,57]

✓ ✓

App Configuration Manipulation
[19,58]

✓

Topology Information Removal
[18]

✓

Storage Poisoning

Malformed Configuration Injection
[57]

✓

Corrupted Flow Rule Injection
[49]

✓ ✓

Event Unsubscription
[19,30,58]

✓

Rootkit Injection
[20]

✓

Man-in-the-Middle Event Hijacking
[19,30,58]

✓

Policy Evasion Cross-app Poisoning
[45]

✓ ✓

Application to
Switch
(Section 5.2)

Denial of Service
FLOW_MOD Flooding
[30]

✓ ✓ ✓

Malformed Control Message Injection
[30]

✓ ✓

Protocol Abusing
Switch Firmware Abusing
[30]

✓

Dynamic Tunneling
[17,59]

✓ ✓ ✓

Buffered Packet Hijacking
[46]

✓ ✓ ✓

Switch to
Controller
(Section 5.3)

Protocol Abusing
Payload Injection
[60]

✓ ✓

Abnormal Protocol Behavior Injection
[61,62]

✓ ✓

Malformed OpenFlow Packet Injection
[58,61,63]

✓ ✓

(continued on next page)
5.1.3. Man-in-the-middle

Contemporary SDN controllers employ an ordered list that deter-
mines the priority of event delivery to different applications. How-
ever, this event delivery mechanism can be exploited by attackers.
An attacker may seize an event before it reaches other applications,
enabling them to manipulate the event’s payload [58] or even dis-
card it entirely [19,30]. Consequently, critical applications like a rout-
ing application may fail to receive essential events, such as topology
changes.
8

5.1.4. Policy evasion
Ujcich et al. [45] have introduced a cross-app poisoning attack

that involves a malicious application poisoning the storage to influence
the decision-making of other applications. For example, the attacker’s
application could inject a PACKET_READ event into the controller,
masquerading as the victim’s MAC address. As a result, the controller
updates the host-to-location pair maintained by the host tracking ser-
vice based on the manipulated packet. Consequently, a forwarding
application may install a rule that redirects the victim’s traffic to the
attacker, violating established security policies.

Computer Networks 241 (2024) 110203J. Kim et al.
Table 2 (continued).
Direction Type Attack Root cause Penetration route

La
ck

of
N

BI
au

th
or

iz
at

io
n

La
ck

of
SB

I
au

th
or

iz
at

io
n

La
ck

of
co

nt
ro

l
ev

en
t

in
te

gr
ity

La
ck

of
co

nt
ro

l
m

es
sa

ge
in

te
gr

ity

La
ck

of
ap

pl
ic

at
io

n
au

th
en

tic
at

io
n

La
ck

of
sw

itc
h/

ho
st

au
th

en
tic

at
io

n

La
ck

of
co

nt
ro

lle
r

re
so

ur
ce

co
nt

ro
l

Si
de

ch
an

ne
l

Im
pl

em
en

ta
tio

n
fla

w

Ap
pl

ic
at

io
n

N
or

th
bo

un
d

in
te

rf
ac

e

Co
nt

ro
lle

r

So
ut

hb
ou

nd
in

te
rf

ac
e

Sw
itc

h

Sw
itc

h
in

te
rf

ac
e

H
os

t

Host to
Controller
(Section 5.4)

Denial of Service
PACKET_IN Message Flooding
[21–23,64–67]

✓

READ_STATE Message Flooding
[68]

✓

Race Condition
[54]

✓

Storage Poisoning
Link Fabrication Attack
[52,67,69]

✓ ✓

Host Identifier Spoofing
[52,67,69,70]

✓ ✓

Malformed LLDP Packet Injection
[71]

✓ ✓

Policy Evasion Cross-Plane Attack
[72]

✓ ✓ ✓

Host to
Switch
(Section 5.5)

Information Leakage

Slow Path Fingerprinting
[21,73]

✓

Policy Fingerprinting
[55,56,74,75]

✓

App Fingerprinting
[76]

✓

Topology/Protocol Fingerprinting
[77]

✓

In-band Channel Fingerprinting
[78]

✓

Man-in-the-Middle
Control Channel MitM
[30,61]

✓ ✓

Middlebox Tag Manipulation
[79]

✓

Denial of Service

Flow Table Overloading
[21,64,67,68,80]

✓ ✓

Switch Race Condition
[81–83]

✓

Switch Remote Code Execution
[51]

✓

In-band Channel Flooding
[78]

✓

Table 3
Popular open source SDN controller repositories.
(Strong Moderate Weak).

Controller Repository Code review

ONOS https://github.com/opennetworkinglab/onos
OpenDaylight https://github.com/opendaylight
POX https://github.com/noxrepo/pox
Ryu https://github.com/faucetsdn/ryu
Faucet https://github.com/faucetsdn/faucet
Floodlight https://github.com/floodlight/floodlight
NOX https://github.com/noxrepo/nox

Summary. Overall, there are numerous attack scenarios in which SDN
applications are abused for penetrating controllers. The root cause con-
9

tributing to these attacks is the inadequate security measures employed
in the northbound interfaces of the controllers, resulting in a significant
impact on controller operation.
Why is application-to-controller penetration possible? Most known
SDN controllers do not have the necessary security mechanisms or
sanitization approaches in place, which leaves them vulnerable to
attacks from malicious or buggy SDN apps. This is because, during the
early stages of SDN development (around 2009), developers primarily
focused on implementing new features and improving performance,
rather than considering security. Additionally, the implementation of
diverse northbound interfaces in SDN controllers to support app func-
tionality resulted in inadequate protection, making these interfaces
susceptible to attacks from malicious or malfunctioning SDN apps.
Can an attacker poison SDN app stores? At the beginning of the
SDN era, it was anticipated that public SDN app stores [15] would

be popular, akin to the Docker Hub. This would have made it easy

https://github.com/opennetworkinglab/onos
https://github.com/opendaylight
https://github.com/noxrepo/pox
https://github.com/faucetsdn/ryu
https://github.com/faucetsdn/faucet
https://github.com/floodlight/floodlight
https://github.com/noxrepo/nox

Computer Networks 241 (2024) 110203J. Kim et al.
Fig. 5. An illustration of the event unsubscription attack [19,30,58] in application-
to-controller penetration. The malicious application deletes the app-2 from the event
subscription list so that it cannot receive an event anymore.

for an attacker to deploy malicious SDN applications. However, as
recent programmable networking trends have moved towards the data
plane, SDN app stores have failed to gain widespread adoption. For
instance, HP Enterprise (HPE) had established an SDN app store for
their commercial controller (HPE VAN SDN controller), but it has since
been discontinued. Consequently, the potential for attackers to utilize
SDN app stores as a means of distributing malicious apps has been
diminished.
Can an attacker poison open-source repositories? One potential av-
enue for the deployment of malicious SDN applications is through
code repositories (e.g., GitHub). At first glance, poisoning them may be
difficult because most code repositories only allow trusted contributors
to upload code. However, an attacker can spoof the identity of a trusted
contributor or alter commit timestamps [85]. Therefore, the security of
open-source controllers heavily relies on the developer’s code reviews.
We analyzed the threat model by surveying controller repositories. As
shown in Table 3, popular controllers such as ONOS and OpenDaylight
conduct strict code reviews through discussion with several developers
before merging into the main branch. However, other controllers may
lack a comprehensive review process, relying on a single developer’s
evaluation or having no review process at all, which leaves them more
susceptible to the deployment of malicious code.
Is there a trend for application-to-controller penetration? Initially,
attackers focused on exploiting vulnerabilities in the northbound in-
terfaces of SDN controllers due to their relative ease of accessibility
(i.e., northbound interface abusing). However, as SDN controllers have
evolved and become more sophisticated, offering a wider range of
features, their internal code base has become more complex, making
it increasingly challenging for developers to anticipate the outcomes
of internal execution. This has resulted in the exposure of another
potential attack surface that is complicated to detect.

5.2. Application to switch

Rationale behind the penetration route. SDN applications utilizing
northbound interfaces possess significant capabilities that extend be-
yond controllers to include switches. Specifically, when high-level mes-
sages are transmitted from applications through northbound interfaces,
they undergo conversion into low-level messages, subsequently being
transmitted to switches via southbound interfaces. Thus, a malicious
application installed on a controller can call an API of a northbound
interface that is capable of interacting with switches. For example,
FlowRuleService in ONOS is responsible for installing flow rules on
a switch. With this, the malicious application can guide the controller
to install a flow rule, which is performed by a device-specific handler
located in southbound interfaces. This mechanism can be exploited to
enable applications to carry out diverse malicious actions on switches.
10
Fig. 6. An illustration of the FLOW_MOD flooding attack [30] in application-to-switch
penetration. The malicious application forces the flow manager to install many flow
rules on a target SDN switch.

5.2.1. Denial of service
Switch TCAM (Ternary Content Addressable Memory) is a criti-

cal resource that should be carefully managed. As they are normally
scarce in switch devices, a controller should carefully install flow
rules in switch flow tables. However, as there is no proper restriction
for southbound interfaces, it is possible to saturate flow tables by
flooding unnecessary flow rules. For example, a malicious app can
invoke a massive number of FLOW_MOD messages with distinct match
fields, causing a switch to install many different rules [30] (Fig. 6).
Furthermore, an attacker can take advantage of the absence of an
exception-handling mechanism in a particular switch implementation.
For instance, if a malicious application sends a malformed Open-
Flow packet with an invalid packet length, it can lead to a failure
in the switch’s handling process, resulting in disconnection from the
controller [30].

5.2.2. Protocol abusing
OpenFlow is a de-facto standard protocol that specifies controller-

switch channels, enabling any switch to communicate with a con-
troller. However, an attacker can abuse its protocol features to conduct
malicious actions on switches.

An attacker can abuse the mechanism of packet matching in Open-
Flow. For example, the switch firmware abusing attack [30] shows that a
malicious application can deliberately replace the match fields of flow
entries with unsupported ones by the hardware (e.g., MAC addresses),
causing packet matching to be processed by the software stack. This
abuse takes advantage of the fact that some switches do not support all
OpenFlow match fields. Consequently, it significantly degrades packet
processing performance.

In addition, an attacker can exploit OpenFlow dynamic actions
to bypass security policies. Porras et al. [17,59] demonstrate that a
malicious app can abuse the OpenFlow Set action to violate network
invariants, aka dynamic tunneling attack. OpenFlow protocols support
a variety of manipulation operations for packet headers, and they
facilitate diverse built-in network services within a switch-forwarding
pipeline without a need for middleboxes. For example, an SDN switch
can implement NAT operations using OpenFlow Set actions that mod-
ify packet header values to desired ones. Here, a malicious application
can install a flow rule whose Set action is to modify blocked IP
addresses to unblocked ones. While these rules conflict with an orig-
inal security policy, none of the existing controllers orchestrate this
contention.

Finally, a vulnerability within the packet forwarding logic can lead
to a critical security breach. When a switch triggers a PACKET_IN
message, it temporarily stores an incoming packet in a switch buffer

Computer Networks 241 (2024) 110203J. Kim et al.

-

Fig. 7. An illustration of the payload injection attack [60] in switch-to-controller
penetration. The malicious switch sends a control message that has a malicious payload,
which is executed in the controller internally.

and assigns it a buffer ID, awaiting the controller’s instruction. This ID
is used to retrieve the packet when the controller instructs the switch
to forward it. Cao et al. [46] introduce a buffered packet hijacking attack
that exploits the fact that OpenFlow switches only examine the buffer
ID, ignoring other match fields when forwarding buffered packets. They
demonstrate that a malicious application can hijack these buffered
packets by using the same buffer ID. If a switch receives a FLOW_MOD
or PACKET_OUT message with the same buffer ID, it considers them
valid control messages. Consequently, the malicious application can
illegitimately forward a packet, allowing it to bypass security policies.
This vulnerability arises from the lack of an explicit requirement in the
OpenFlow switch specification regarding strict checking of match fields
when handling buffered packets [44].
Summary. It is evident that SDN applications can be exploited to abuse
protocol implementations, leading to unforeseen actions by switches.
As a consequence, switches can malfunction or violate established
policies.
Why is application-to-switch penetration possible? There are several
reasons behind these vulnerabilities. First, the switch itself often fails
to manage resources carefully since most of its functions have been mi-
grated to a controller. Consequently, if the controller does not diligently
monitor and manage switch resources, they can be wasted. Second,
there is a deficiency in the proper inspection of southbound interfaces,
which are responsible for communication between the controller and
switches. Unlike northbound interfaces, southbound interfaces receive
limited attention regarding access control and message integrity check-
ing. Third, while OpenFlow has contributed to the success of SDN
deployment, its protocol specification delegates many implementation
details to vendors, thereby creating potential security vulnerabilities in
switch implementations.

5.3. Switch to controller

Rationale behind the penetration route. Network devices, such as
routers and switches, can be compromised and exploited to perform
additional malicious actions [50,51]. One attractive target would be a
controller as it has a direct communication channel with all switches.
Switch-to-controller penetration targets the southbound interface, reach
able via a control channel (i.e., OpenFlow) established between a
malicious switch and controller. The malicious switch injects protocol
messages that are parsed within the controller, expecting that it causes
an unexpected event chain or abnormal state updates. Considering that
OpenFlow specification [44] has lots of message fields and different
requirements, the security of the controller mainly relies on how
southbound interfaces can handle all corner cases, which is difficult
to achieve. Thus, various attack cases are possible if there are bugs on
it.
11
Fig. 8. An illustration of the PACKET_IN flooding attack in host-to-controller pene-
tration. When the malicious host sends packets whose rules are not installed in the
switch, they are forwarded to the controller by being encapsulated to PACKET_IN. If
the controller receives too many PACKET_INs, it cannot handle other requests.

5.3.1. Protocol abusing
A switch-to-controller event chain can be used to inject a malicious

payload that is executed inside a controller (see Fig. 7). Xiao et al. [60]
reveal that a compromised switch can inject a malicious payload into
an OpenFlow message to execute arbitrary commands on SDN apps or
controller modules. It exploits the fact that the payload of an OpenFlow
message is often used by controller internal components, enabling
an attacker to extract confidential information (CVE-2018-1000614,
CVE-2018-1000616, CVE-2018-1132, CVE-2018-1000613), manipulate
network states (CVE-2018-1999020, CVE-2018-1000615), and perform
denial of service (CVE-2018-1999020, CVE-2018-1000617).

On the other hand, a malicious switch may inject abnormal protocol
behavior. Specifically, ATTAIN [62] discovers that dropping OpenFlow
messages can cause denial-of-service on a target network, as a con-
troller cannot install any flow rule. BEADS [61] reveals that dropping,
replaying, and delaying OpenFlow messages can make a controller lose
connection from switches.

Finally, a malicious switch may violate message specification to
trigger an unexpected controller bug. Shalimov et al. [63] propose a
method that tests if controllers process malformed OpenFlow messages.
For example, when an incorrect length value is injected into an
OpenFlow header, a target controller crashes. DELTA [58] shows that
manipulating OpenFlow headers with a randomized value causes a tar-
get controller to disconnect the connection from a switch. BEADS [61]
presents many similar attack cases in several controllers by fully ran-
domizing all possible OpenFlow headers and message fields using
fuzz-testing.
Summary. Switch-to-controller penetration is an emerging research
field, but its impact on controller operations cannot be ignored. A com-
promised switch can directly access a controller through a control chan-
nel, which is often overlooked during controller design. Considering
this threat model is crucial to enhance SDN security.
Is compromising SDN switches a serious attack? Compromising SDN
switches can cause more serious damage compared to legacy network
environments. This is because the transmission of corrupted informa-
tion or messages from compromised devices to an SDN controller can
lead to confusion and incorrect decisions regarding network policies.
Furthermore, attackers often target these devices as their starting point
for attacks because they can be remotely accessed and may not have
strong security measures in place.

5.4. Host to controller

Rationale behind the penetration route. While the majority of crit-
ical communication in an SDN architecture takes place between a
controller and switches, it is worth noting that a host can indirectly
impact the operation of the controller through a switch. This exploits
the fact that most messages sent from a host to a switch are not
rigorously investigated and even they can update the controller states

Computer Networks 241 (2024) 110203J. Kim et al.
remotely. SDN switches are inherently programmed and send a specific
message (e.g., PACKET_IN) to a controller when a certain condition
is met (e.g., no matching rules). Thus, a malicious host can send a
packet that contains a malicious payload, which is crafted for updating
controller states abnormally. This creates an additional avenue for
potential penetration.

5.4.1. Denial of service
Whereas the separation of control and data planes enables the

management of all switches, it has been suggested that the centralized
control plane is architecturally weak. Specifically, a single controller
can be overloaded when switches request lots of control messages.
Exploiting this fact, a malicious host can mount controller denial of ser-
vice (DoS) attacks that use SDN switches as reflectors to saturate control
channels. This attack can degrade network performance significantly
and even take down the control plane.

Shin and Gu [21] propose a concept of reflective DoS attacks,
abusing OpenFlow PACKET_IN messages. They suggest that attack-
ers can send a series of packets with different headers to trigger
table-mismatch, making a target switch generate many PACKET_IN mes-
sages to a controller (Fig. 8). FloodDefender [66] shows that the
PACKET_IN flooding attacks overload the CPU utilization of a tar-
get controller. SWGuard [64] further employs a probing method that
observes round-trip-times (RTTs) to learn which match fields trigger
PACKET_IN messages. Besides, many other works [22,23,65,67] are
motivated by the DoS attacks due to their serious impact.

In addition, an attacker can exploit READ_STATE messages that are
used for collecting switch statistics to exhaust controller resources. If a
malicious host conducts the PACKET_IN flooding attack, it subsequently
makes a target switch install many rules. The more rules are installed,
the more resources are needed to collect READ_STATE messages from
the target controller. DevoFlow [68] analyzes this problem from a
performance point of view by evaluating it on hardware OpenFlow
switches.

By exploiting implementation bugs, an attacker can deliberately
raise a harmful race condition to make a controller unavailable. Xu
et al. [54] demonstrate that it is possible to perform TOCTOU (Time-Of-
Check to Time-Of-Use) attacks on shared variables of a controller. For
instance, SWITCH_JOIN and SWITCH_LEAVE represent events that are
generated when a switch is connected and disconnected, respectively. A
dpid variable is created when the former event is detected, while the
variable is removed for the latter event. Suppose that those events are
produced from the data plane intermittently. In that case, it is possible
to try accessing the shared variable after being removed, causing a null
point exception.

5.4.2. Storage poisoning
From a controller’s perspective, maintaining a consistent view with

switches is crucial due to their physical separation. To achieve this,
most SDN controllers typically store the current topology view of the
data plane, encompassing information such as link status and host
details. To ensure the integrity of this storage, applications running
on a controller must carefully consider the view before making any
decisions. However, researchers have demonstrated that compromising
the topology view is possible by exploiting the link discovery service and
host tracking service of a controller (Section 2.2).

The link discovery service is employed to identify active links
on the data plane using the following methods. Initially, it directs
a switch to broadcast LLDP (Link Layer Discovery Protocol) packets
to its neighbors through PACKET_OUT messages. Upon receiving the
LLDP packet, the neighbor switch sends a PACKET_IN message to the
controller. Subsequently, the link discovery service recognizes a link
between those switches.

The problem is that most controllers neither restrict usage of APIs
that affect the service nor investigate whether those LLDP packets
12
Fig. 9. An illustration of the link fabrication attack [52,67,69] in host-to-controller
penetration. The malicious host 1 and 2 establishes a secret tunnel and send shared
LLDP packets to the switch A and B, respectively. As a result, the controller misleads
that switch A and B are connected.

come from a real switch. This vulnerability allows attackers to ma-
nipulate link information from various layers. On the infrastructure
layer, SPHNIX [67] and TopoGuard [52] show that an attacker can
inject fake link information by relaying LLDP packets between two
malicious hosts (Fig. 9). Note that those vulnerabilities were reported
to vendors as well (CVE-2015-1610, CVE-2015-1611, CVE-2015-1612).
While TopoGuard [52] proposes a defense that distinguishes actual
link events based on precondition (e.g., PORT_DOWN or PORT_UP),
TopoGuard+ [69] proposes a port amnesia attack that bypasses the
defense through artificially generating fake PORT_DOWN events.

The host tracking service is in charge of binding host identifiers
(i.e., MAC and IP addresses) with current locations (i.e., the ports
connected to switches). It updates the host location based on the most
recently detected PACKET_IN message. However, since this does not
verify if the binding is valid, it gives an attacker a chance to disguise
herself with the existing host information.

TopoGuard [52] and SPHNIX [67] introduce a host location hijacking
attack, which poisons the service with spoofed host identifiers. For
instance, when an attacker’s host sends a packet that spoofs the victim’s
IP address, the service updates the victim’s location to the attacker’s.
A controller believes that the victim migrates to the new location;
thus, it redirects the victim’s traffic to the attacker. In addition, To-
poGuard+ [69] presents a port probing attack that periodically probes
victim status and attempts to take the victim’s binding when it goes
offline. SecureBinder [70] introduces a similar attack, called a persona
hijacking attack against DHCP.

Finally, it is shown that LLDP packets are attactive targets to trigger
exceptional cases on southbound interfaces. Marin et al. [71] propose
reverse loop and topology freezing attacks. The former exploits the fact
that a controller typically probes an opposite link when receiving an
LLDP packet whose LINK_TYPE field is 0 × 01. By transmitting such
LLDP packets, a target controller falls into generating probe packets
indefinitely, which causes resource exhaustion. The latter is the case
when an attacker injects fake links originating from the same port. As
the link discovery service in Floodlight [40] considers it a broadcast
port, it is removed from the topology view. However, a forwarding app
tries to read the unavailable link without recognition, which triggers a
null pointer exception.

5.4.3. Policy evasion
A malicious host can affect controller operation to evade security

policies. For instance, the host can abuse a host-to-controller event
chain. Ujcich et al. [72] present a cross-plane attack that focuses on
‘‘unhandled’’ events by applications. They show that the malicious

Computer Networks 241 (2024) 110203J. Kim et al.
Fig. 10. An illustration of the policy fingerprinting attack [55,56,74,75] in host-to-
switch penetration. The malicious host sends a carefully created packet to see if it
takes the slow path. If so, the rule associated with the packet is not installed in the
switch. Otherwise, the rule is installed in the switch (i.e., fast path).

host can trigger a malformed HOST_UPDATED event containing a
broadcast IP address (e.g., 192.168.0.255), which is syntactically valid
but meaningless for identifying a host. Subsequently, it makes a con-
troller fail to install a rule that blocks a certain flow as it cannot
parse the event. Thus, the attacker can bypass a security policy (CVE-
2018-12691). For a similar purpose, the malicious host can send a
fake ARP reply that spoofs the other host’s MAC address, triggering a
HOST_MOVED event. Consequently, the host-related rules are automat-
ically cleaned up, and thus the malicious host can bypass access control
rules (CVE-2019-11189). Other similar vulnerabilities were reported as
well (i.e., CVE-2019-16297, CVE-2019-16298, CVE-2019-16299, CVE-
2019-16300, CVE-2019-16301, CVE-2019-16302).
Summary. The control layer of SDN is highly vulnerable to injection
attacks, which involve the utilization of fake or invalid information or
protocol messages by a malicious host. These attacks frequently stem
from the lack of integrity checks on messages or events, leading to
controller DoS and policy failure.
Why is host-to-controller penetration possible? In SDN, a controller
possesses a comprehensive overview of the entire network through its
logically centralized architecture. This design philosophy offers numer-
ous advantages in effectively and flexibly managing the underlying
network devices. However, with switches being reduced to ‘‘dumb’’
devices, there is a vulnerability where a malicious host can inject mal-
formed messages that are not filtered at the data plane. Consequently,
switches end up transmitting abnormal messages to the controller.
Therefore, the centralized design of SDN can be seen as a double-
edged sword. Thus, it is crucial to develop SDN controllers with fault
tolerance and the capability to verify updated states. These measures
are necessary to mitigate these risks and fully capitalize on the benefits
of a centralized architecture.

5.5. Host to switch

Rationale behind the penetration route. In an SDN-enabled network,
a host can send packets to its connected switch freely unless there is a
blocking rule. By sending well-crafted packets to a switch, a malicious
host may trigger bugs in switch implementations or obtain sensitive
information. More importantly, this is the shortest route (identical to
the app-to-controller); thus it is possible to remain stealthy as there are
numerical hosts in the network.

5.5.1. Information leakage
The forwarding mechanism of SDN switches can inadvertently leak

valuable information to attackers. For instance, Shin and Gu [21] and
Bifulco et al. [73] demonstrate that attackers can discern whether a
target switch is SDN-enabled by measuring latency differences caused
by table mismatches. In the data plane, a switch needs to contact the
13

SDN controller remotely when there is no matching table entry for
incoming packets. The switch sends a PACKET_IN message to the con-
troller, and in response, it receives a FLOW_MOD message instructing
flow installation. Incoming packets are held in a queue while waiting
for the OpenFlow procedure, and they are subsequently forwarded
once the switch installs a flow rule. This moment, known as the slow
path, results in elevated latency for the first packet, affecting end-user
experience.

Through in-depth analysis of timing differences, attackers can fin-
gerprint network and security policies for a target network (Fig. 10).
Sonchack et al. [55] demonstrate the possibility of measuring round-
trip-times (RTTs) from specific destinations using packet streams. El-
evated RTTs indicate the involvement of the control plane in packet
forwarding, signifying that no installed rule is matched. With this
insight, attackers can infer various network policies, including host
communication patterns, access control lists, and monitoring rules. Liu
et al. [75] propose a more formalized method that models switch flow
tables as a Markov model, inferring fine-grained rules among complex
flow rules. Yu et al. [74] adopt a similar idea, focusing on switch
parameters such as flow table size, cache replacement policy, and
load. Achleitner et al. [56] propose flow rule reconstruction techniques
using carefully crafted probing packets that spoof specific header fields
(e.g., MAC and IP addresses) to determine if they are used as match
fields in flow rules. If a destination host replies to the probe despite
the spoofed header, attackers can deduce that the field is not used.
By eliminating answered headers, attackers can identify an unanswered
one, which is the target rule’s match field.

Even under the SSL/TLS encryption of control channels, it cannot be
fully guaranteed that there is no leakage. Cao et al. [76] demonstrate
that attackers can analyze patterns of encrypted control traffic with
deep learning and infer what kinds of SDN apps are currently running
on a target SDN controller. The idea is that control traffic shows
directional patterns according to SDN applications. Seo et al. [77]
expand the scope of analysis to the context of a distributed SDN
controller environment. They specifically examine the traffic exchanged
between distributed SDN controllers that are widely used in SD-WAN
(Software-Defined WAN) and demonstrate that attackers can gain ac-
cess to confidential information such as the topology and protocols
being employed in the SD-WAN through the use of deep learning-based
techniques.

As network size expands, the task of establishing dedicated control
channels (referred to as out-of-band) between a controller and switches
becomes challenging due to physical distances and high costs. In such
cases, network operators frequently opt for in-band channels, where
control-plane and data-plane traffic coexist on the same links. Although
the information indicating which links serve as in-band control chan-
nels is kept confidential, Cao et al. [78] show that an attacker can
identify these links by measuring latency variations.

5.5.2. Main-in-the-middle
Unencrypted control channels are highly susceptible to man-in-

the-middle attacks. Unfortunately, SSL/TLS encryption for OpenFlow
control channels is rarely implemented in real-world scenarios due to
the significant performance degradation it incurs [86]. As a result,
if attackers manage to compromise a switch or launch ARP spoofing
attacks to intercept control traffic, they gain the ability to eavesdrop on
all OpenFlow messages. Notably, Yoon et al. [30] and Jero et al. [61]
have demonstrated that attackers positioned as a man-in-the-middle
between a controller and a switch can manipulate the action field of
FLOW_MOD messages to selectively drop traffic, causing disruptions in
the flow of benign network traffic.

Compromised switches can also be abused for man-in-the-middle
attacks to bypass middle-box service chains. Bu et al. [79] show that
a compromised switch manipulates a packet tag which is used for
marking the service chain context of middleboxes. As there is a lack
of packet integrity checks in the current SDN, this attack cannot be

mitigated.

Computer Networks 241 (2024) 110203J. Kim et al.
5.5.3. Denial of service
Switch TCAM (Ternary Content Addressable Memory) is a critical

resource that should be carefully managed. As they are normally scarce
in proprietary devices, a controller should carefully install flow rules
in switch flow tables. However, as there is no proper restriction for
southbound interfaces, it is possible to saturate flow tables by installing
unnecessarily many rules. For instance, a malicious host can send ran-
domly spoofed packets to a switch. This attack, also known as flow table
overloading attack, makes the target switch forward PACKET_INs to a
controller, thereby making many flow rules installed [21,64,67,68,80].

Open vSwitch (OVS) [4] is the most popular NFV (Network Function
Virtualization), which enables the deployment of high-performance
virtual switches. As it is fully compatible with OpenFlow, it is widely
used in cloud environments that employ SDN. Whereas the virtualized
data plane contributes to broadening OpenFlow deployment, it also
expands the attack surfaces of an attacker who looks for a chance to
infiltrate inside a cloud. Thimmaraju et al. [51] propose a remote-
code execution attack that exploits a stack buffer overflow vulnerability
of MPLS (Multiprotocol Label Switching) parsing logic in OVS. They
discover that OVS parses all MPLS labels even if they exceed a pre-
defined threshold. So, if an attacker injects ROP (Return Oriented
Programming) gadgets into MPLS packets, they can execute a remote
shell on the switch. Consequently, the attacker can compromise the
virtual switch and laterally access other virtual switch instances.

Concurrency bugs that trigger race conditions can lead to switch
denial-of-service vulnerabilities [81–83]. Consider a scenario where a
controller needs to establish bidirectional flow rules using two
FLOW_MOD messages before forwarding a requested packet using
PACKET_OUT. If BARRIER_REQUEST is not utilized, the OpenFlow mes-
sages sent to a specific switch may be processed in a non-deterministic
manner. For instance, if a PACKET_OUT message is sent to the switch
first, a pending packet may be forwarded before the installation of
a flow rule for the opposite path. This can lead to the creation of a
forwarding loop and potentially disrupt network operations.
Summary. As discussed, the insufficient implementation of switches is
a primary factor that significantly contributes to host-to-switch pen-
etration. This limitation can result in various outcomes, including
fingerprinting, man-in-the-middle attacks, and denial of service inci-
dents.
Why is host-to-switch penetration possible? Although vendors are
required to support the OpenFlow protocol, there are inconsistencies
between vendors regarding supported specifications and protocol ver-
sions. This leads to implementation bugs and unpredicted abuses of
the protocol by SDN developers. As such, it is imperative for security
researchers to direct greater attention towards the security of SDN
switches, as these inconsistencies can lead to vulnerabilities that can
be exploited by attackers.

6. SDN defense classification

In this section, we introduce a classification of countermeasures
designed to defend against the aforementioned SDN attacks. Table 4
offers a comprehensive overview of all examined countermeasures, in-
cluding their associated root causes and components. Furthermore, we
include information on the cost of each defense, addressing challenges
related to their implementation and deployment. Additional insights
and findings will be provided at the conclusion of each subsection.

6.1. Application layer

The primary reason that allows a malicious application to perform
harmful API invocation is that most controllers have no authentica-
tion and authorization measures for applications. Due to this reason,
some studies have proposed solutions that can be adopted in the SDN
application layer.
14
Fig. 11. An illustration of the permission system for application-layer defense. The
permission checker sits between the northbound interface and core modules to inspect
whether applications have suitable permission.

6.1.1. Authentication
A digital certificate signed by trusted entities would help operators

trust SDN applications. FortNOX [59] and SE-Floodlight [17] use digital
signatures when tracking flow rules driven by specific apps. Rose-
mary citeshin2014rosemary employs public key infrastructure (PKI) to
verify if SDN apps are correctly signed by a developer. These cases show
that application authentication can fundamentally prevent malicious
apps from being installed. We believe that a set of digital certifica-
tion methods established between SDN developers and operators will
significantly enhance a trusted SDN application ecosystem.

6.1.2. Access control
To prevent unauthorized access to any API of a controller, role-

based access control (RBAC) has been proposed [15,17,59,87]. The
primary goal is to restrict application behavior by assigning predefined
priorities to running SDN applications (see Fig. 11). In this context,
SDN applications can be associated with a specific role, representing
a security level that determines access to certain APIs. Consequently,
applications with lower priority cannot invoke security-sensitive north-
bound APIs, such as flowruleWrite() in the ONOS controller,
which is used for modifying flow rules.

As modern SDN controllers have grown in complexity, and a multi-
tude of applications have been developed, the RBAC model may prove
too broad to handle all cases. For instance, an administrator might
want to block flowruleWrite() while allowing other functions.
To address this, Security-Mode ONOS (SM-ONOS) [15] proposes a
northbound interface (NBI) permission model tailored for the ONOS
SDN controller [42]. This model introduces a hierarchical structure
comprising application-, bundle-, and API-level permissions.

SDNShield [16] presents permission filters similar to Berkeley Packet
Filter (BPF) syntax. Administrators can select desired permissions based
on a manifest file that includes the permissions used in SDN appli-
cations. However, it relies on developers accurately documenting the
used permissions in the manifest file. At a certain point, attackers may
attempt to specify false permissions to deploy malicious applications.
To address this, AEGIS [48] proposes a natural-language-processing
(NLP)-based analysis system to compare the actually used permissions
of an SDN application with its manifest file.

Finally, some studies have devised a permission model for south-
bound interfaces (SBI). For instance, SE-Floodlight [17] proposes RBAC
for southbound interfaces to restrict the abuse of the OpenFlow proto-
col.

Computer Networks 241 (2024) 110203J. Kim et al.

6

a
d
w
i

g
r

Table 4
Systematization of SDN defenses. (✓ Root Cause Target)
Layer Type Defense Root cause Target component/interface Cost

La
ck

of
N

BI
au

th
or

iz
at

io
n

La
ck

of
SB

I
au

th
or

iz
at

io
n

La
ck

of
co

nt
ro

l
ev

en
t

in
te

gr
ity

La
ck

of
co

nt
ro

l
m

es
sa

ge
in

te
gr

ity

La
ck

of
ap

pl
ic

at
io

n
au

th
en

tic
at

io
n

La
ck

of
sw

itc
h/

ho
st

au
th

en
tic

at
io

n

La
ck

of
co

nt
ro

lle
r

re
so

ur
ce

co
nt

ro
l

Si
de

ch
an

ne
l

Im
pl

em
en

ta
tio

n
fla

w

Ap
pl

ic
at

io
n

N
or

th
bo

un
d

in
te

rf
ac

e

Co
nt

ro
lle

r

So
ut

hb
ou

nd
in

te
rf

ac
e

Sw
itc

h

Sw
itc

h
in

te
rf

ac
e

H
os

t

Application Layer
(Section 6.1)

Authentication Application Authentication
[17,18,59]

✓ Medium

Access Control
Role-based Authorization
[15,17,59,87]

✓ ✓ Medium

NBI Permission Model
[15,16,48]

✓ Medium

SBI Permission Model
[17]

✓ Medium

Monitoring Control-Plane Invariant Verification
[17,88–90]

✓ Medium

Program Analysis Control/Data Flow Analysis
[12,45,72,91]

✓ Medium

Control Layer
(Section 6.2)

Testing Control Event Blackbox Fuzzing
[58]

✓ ✓ Medium

Control Message Blackbox Fuzzing
[58,61,62]

✓ ✓ Medium

Patch/Extension
Multi Controller
[39,92,93]

✓ High

Controller Failure Recovery
[94,95]

✓ Medium

Controller Sand-boxing
[18,87,95]

✓ High

Infrastructure Layer
(Section 6.3)

Testing Protocol Conformance Testing
[58,96]

✓ Medium

Monitoring Malicious Switch Detection
[97–99]

✓ ✓ Medium

Patch/Extension

Protocol Extension
[23,68]

✓ Medium

Proactive Rule Installation
[65,68]

✓ Low

Switch Module Extension
[22,23,68,69,100]

✓ High

Delay Normalization
[55]

✓ Low

Delay Randomization
[73,75,78]

✓ Low

Cross Layer
(Section 6.4)

Authentication Switch/Host Authentication
[52,70,101]

✓ Medium

Monitoring Topology Event Verification
[52,67,69]

✓ ✓ Medium

Data-Plane Invariant Verification
[67,102,103]

✓ Medium

Program Analysis Dynamic Instrumentation
[54,81–83,104,105]

✓ Medium

Provenance Graph Analysis
[12,45,106,107]

✓ Medium
t
r
p
v

r
f
(

.1.3. Monitoring
In SDN architecture, various SDN applications run upon a controller

nd they can generate many OpenFlow rules. In this context, it is
ifficult to verify if the rules generated by distinct applications comply
ith security policies correctly. Thus, the goal of invariant verification

s to inspect potential violations of those rules.
SE-Floodlight [17] proposes a rule-based conflict analysis (RCA) al-

orithm that investigates conflicts between a newly created OpenFlow
ule and existing ones. For example, a malicious application can abuse
15

v

he OpenFlow Set action that modifies packet headers to create a
ule chain, bypassing a security policy. The goal of RCA is to create a
ossible rule chain and compare it with existing rules to detect policy
iolations.

Formal methods are helpful when checking the correctness of the
ules. FLOVER [90] and VeriCon [88] model SDN applications as
irst-order logic to check invariant with Satisfiability Modulo Theories
SMT) solvers. While it may take a long time if there are many in-
ariants required to investigate, it can correctly verify possible corner

Computer Networks 241 (2024) 110203J. Kim et al.
Fig. 12. An illustration of the distributed SDN controllers [39,92,93] for control-layer
defense. The leader controller replicates states to other follower controllers and they
synchronize a global view with each other.

cases. NICE [89] uses model checking to examine if invariants hold
under a certain controller state. However, exploring all possible states
is intractable given the number of possible state transitions determined
by diverse inputs (e.g., packets, events). Thus, they also use symbolic
execution to reduce input space.

6.1.4. Program analysis
Typical execution flows in an application layer can be represented

as a series of API call sequences triggered by an event. The hidden at-
tack chains normally stem from these intractable processing sequences.
From the complex call sequence, it is hard to pinpoint a suspect API
that contributes to violating a security policy.

To address this problem, operators can employ the static analysis
that examines the control flow graph (CFG) extracted from an applica-
tion source code. INDAGO [91] leverages a machine-learning approach
to find suspicious patterns of API call chains from malicious apps. It
investigates diverse features pertaining to security-sensitive APIs that
manipulate the states of SDN controllers. By conducting clustering
analysis, it is shown that malicious API chains can be detected with
high accuracy. EventScope [72] extends the CFG into an event flow
graph to catch how events are propagated over code blocks within an
application. Its purpose is to detect ‘‘unhandled’’ data-plane events by
the application, which makes a hole that an attacker can bypass security
logic.
Summary. The focus of defense strategies in the application layer
primarily centers around controller extension and its program analysis,
as the controller is a crucial component for application support.
Is there a trend for application-layer defenses? There have been vari-
ous proposed attack scenarios in the application layer, leading to active
research in this area to prevent them. From our analysis, we notice
that most studies have borrowed ideas from existing techniques. For
example, the idea of API-level permissions is borrowed from Android
systems [108] and control flow analysis approaches also adopt their
main ideas from popular malware static analysis platforms [109].
Are proposed defenses deployed in practice? We observe that simple
security measures, such as permission models, have already been imple-
mented in a popular SDN controller (e.g., SM-ONOS [110]). However,
it is difficult to find real-world cases of using SDN malware detection
methods in controllers, indicating a need for more feasible and practical
solutions for the SDN environment.

6.2. Control layer

As mentioned, controllers are a critical component in SDN, and they
must not be vulnerable to shutdown by any attacks. To achieve this,
numerous studies have been proposed to test, extend, and improve their
robustness and availability.
16
6.2.1. Testing
Testing, such as blackbox fuzzing, has been proven to be useful for

finding hidden bugs in software. As these bugs can be abused by attack
chains, it is helpful to find and fix them before deployment. DELTA [58]
proposes a control event fuzzing module that discovers potential vul-
nerabilities of northbound interfaces. They are mainly raised from the
misimplementation of event processing logic in controller internals. By
randomizing inputs or control flow sequences in an application service
chain, it is able to find possible bugs pertaining to control events, which
can be abused by a malicious application.

Protocol implementation of a controller normally involves large
input space due to a variety of protocol messages, and thus it is difficult
to find exceptional cases with manual labor. Fuzz-testing can address
this challenge by exploring all possible input combinations to find
unexpected behavior. DELTA [58], BEADS [61] and ATTAIN [62] are
representative fuzzing tools. Their fuzzing techniques aim to either
conduct anomaly actions (e.g., packet drop, manipulation, and delay)
in the middle of protocol sessions or inject malformed messages that
do not correspond to protocol specifications. These kinds of black box
fuzzing techniques, which can be utilized as security assessment tools
at the same time, can classify inherent weaknesses of the target SDN
controllers while incredibly reducing manual effort; thus, it would be
efficient for operators to measure their own controller’s security.

6.2.2. Patch/extension
To mitigate the control plane saturation attacks and the single

point of a failure problem, various traditional concepts, such as dis-
tributed systems, OSes, and database systems have been applied in SDN
controllers.

Physical extension of a single SDN controller has been adopted to
obtain resilience against DoS attacks, and even high performance by
partitioning a network into several segments. Onix [39] is the first
trial to design a multi-controller platform running on a large-scale
production network. It maintains NIB (Network Information Base),
which is a logically centralized graph abstraction for data-plane ele-
ments (e.g., forwarding tables, topology). Multiple controller instances
divide NIB into several chunks and aggregate the part of it to a single
node when necessary to avoid excessive memory usage per controller
instance.

ONOS [92] is a widely-used open-source multi-controller that fea-
tures a master–slave relationship between switches and controllers.
The master controller can perform both read and write operations on
a switch, while the slave can only read the switch’s state. OpenDay-
light [93] is a model-driven multi-controller that divides all data into
units called shards, which are minimum data units like topology and
flows. These shards are communicated between controller instances for
synchronization. Note that both ONOS and OpenDaylight use Raft, a
consensus algorithm for strong consistency, and distinguish between
a leader and followers, where the leader accepts read/write operations
and replicates them to followers (see Fig. 12).

As controller instances are augmented, state replication is employed
so that slave-controller instances can maintain a consistent view with
the master through the east/westbound interface (Section 2.1). Ra-
vana [94] models the process of state replication as a database trans-
action, and proposes a two-phase replication protocol that guarantees
atomicity of a replication process. In addition, failure recovery pro-
tocols (or algorithms) would help in restoring states of control and
data planes in case of failure. LegoSDN [95] introduces a cross-layer
roll-back mechanism through managing snapshots. When an application
fails, it enables the controller to restore previous states from a saved
checkpoint.

The monolithic architecture constitutes a primary factor contribut-
ing to the inadequate robustness of SDN controllers. In response to this
limitation, researchers have pursued strategies to compartmentalize
the execution space, focusing on both applications and core modules.
Pioneering initiatives by Rosemary [18] and LegoSDN [95] introduce a

Computer Networks 241 (2024) 110203J. Kim et al.
Fig. 13. An illustration of the switch module extension [22,23,68,69,100] for
infrastructure-layer defense. The controller offloads performance-sensitive functions and
installs proactive rules in the switch. This approach enables flows to take the fast path,
reducing the controller overhead.

sandbox architecture designed to segregate applications from core mod-
ules. This approach effectively detaches application processes from the
core module space, facilitating API invocation through Remote Proce-
dure Call (RPC). Furthermore, the work by Rosemary and Barista [87]
present a sophisticated micro-kernel architecture. This design partitions
core modules into isolated entities, thereby enhancing their separation
and independence.
Summary. Most defense mechanisms in the control layer focus on
addressing the shortage of resource control in current SDN controllers.
Many works have proposed extending the control-plane functions to
enhance controller robustness and availability.
Why is the control-layer defense important? An SDN controller is often
referred to as the ‘‘brain’’ of the network [54]. As the name implies,
a failure in the controller can result in a malfunction of the entire
network. Therefore, SDN controllers must have fundamental security
properties to ensure fault tolerance.
Is there a trend for control-layer defenses? Some proposals such
as application isolation and resource management were proposed in
academia. However, in industry, instead of adopting these ideas, popu-
lar controllers like ONOS and OpenDaylight have implemented a multi-
controller architecture, which has proven to be robust in carrier-grade
networking environments [111].

6.3. Infrastructure layer

Due to the potential for critical bugs and the risk of malicious
behavior in switches, various solutions have been proposed to assess
their implementation, monitor behavior, and extend functionalities.

6.3.1. Testing
As the difference in the OpenFlow implementations of switches

leads to unexpected bugs, it can expose critical vulnerabilities to at-
tackers who aim to compromise switches or abuse protocol specifi-
cations. The root cause of this security hole is that various switch
vendors interpret specifications differently. With this fact, there have
been several studies to find those implementation holes using protocol
implementation testing. SOFT [96] attempts to find implementation
inconsistencies among different switch vendors. It utilizes symbolic
execution to explore the control flows of switch agents and compares
their different outcomes. DELTA [58] uses its value-fuzzer module
to inject randomized OpenFlow packets to find abnormal cases from
switches.

6.3.2. Monitoring
As discussed, SDN switches are susceptible to compromise, enabling

attackers to intercept and drop packets. To mitigate this risk, various
techniques have been proposed to detect malicious switches exhibiting
17
anomalous behavior. Kamisinski et al. [97] identify two types of mali-
cious switches—packet droppers and packet swappers (which forward
packets to different ports)—and employ anomaly detection to detect
these threats. Chi et al.[98] propose an online detection algorithm that
generates an artificial packet from a controller to verify if it follows the
intended forwarding path. Mohan et al.[99] leverage node-disjoint con-
trol paths, exploiting the inconsistency between two control messages
if the source switch is compromised. For a more comprehensive survey
on this topic, refer to [112].

6.3.3. Patch/extension
Early SDN developers adhered to the design philosophy of 4D [1],

leading to SDN switches as simple forwarding devices with limited
local-decision capability. The primary issue arises from the verbosity of
SDN switches, which must consult a controller when encountering un-
known packets (i.e., table-miss). Several solutions have been proposed
to alleviate the controller burden by enabling switches to make certain
decisions independently when required.

One approach to alleviate the controller burden is the proactive
installation of "wildcard" rules. DIFANE [65] introduces the concept
of authority switches responsible for determining forwarding actions for
network partitions, functioning like default gateways. These switches
employ wildcard rules that match partial flow spaces of policies. In
case of table-misses, ingress switches can consult the authority switches
without querying the controller for instructions. DevoFlow [68] also
advocates the aggressive use of wildcard rules for uninteresting flows,
such as mice flows, shifting most decision-making to the data plane.
These approaches offer the advantage of requiring modifications to only
a small part of the switch implementation.

Switch modules can be enhanced to support greater intelligence,
making them more resilient against saturation attacks (refer to Fig. 13).
AVANT-GUARD [23] introduces the connection migration technique,
which relays traffic only for established TCP sessions. By confirming
a new TCP connection request through a syn cookie before reporting
it to the control plane, this approach reduces excessive control-plane
dependency. Building on this concept, OFX [100] proposes a versa-
tile framework that enables operators to implement various security
functions in an OpenFlow switch using diverse APIs. FloodGuard [22]
introduces a switch add-on module, known as data-cache, which tem-
porarily stores table-miss packets to prevent control-plane saturation
during flooding. It employs multi-queues to manage packets per proto-
col, assuming that attackers typically use a single protocol in flooding
attacks (e.g., TCP, ICMP flooding). SWGuard [69] adopts a similar
approach, maintaining queues inside a switch based on OpenFlow
message types. These queue-based extensions help schedule packets to
alleviate the impact on data-to-control-plane messages.

Several works aim to extend protocol capabilities to incorporate
additional functions beyond native OpenFlow actions. DevoFlow [68]
introduces two actions: rule cloning and local routing. The former re-
duces excessive usage of switch TCAM by generating an exact-matching
rule from a given wildcard rule, while the latter allows switches to
determine multipaths similar to ECMP or automatically reroute a path
upon detecting a failed output port. AVANT-GUARD [23] introduces
actuating triggers, which extends switch functionality to asynchronously
report network status without relying on control-plane operations.

The root cause of timing-based side-channel attacks in SDN is the
necessity for switches to request instructions from the controller when
encountering an unknown packet, leading to exploitable timing differ-
ences. To mitigate these attacks, one potential solution is to obfuscate
timing delays. For example, Sonchack et al. [55] propose a timeout
proxy on a switch to normalize control path latency. If a packet does
not match a flow table, it follows a default forwarding rule installed on
the switch. Other researchers have suggested similar approaches, such
as incorporating random delays into control channels [73,75,77,78].
Summary. Various studies have been conducted on the topic of
infrastructure-layer security. However, a majority of these proposals

Computer Networks 241 (2024) 110203J. Kim et al.
Fig. 14. An illustration of the provenance graph system [12,45,106,107] for cross-layer
defense. It collects evidence from multiple SDN layers and analyzes a provenance graph
to perform forensic analysis.

concentrate on the verification of enforced rules or the evaluation of
protocol correctness. There remains a significant gap in the literature
concerning the security of network devices from malicious attacks.
Why is the infrastructure-layer defense important?With the increasing
reliance on network infrastructure, it is crucial to ensure its security.
Attackers often target network devices as a starting point for their
attacks, thereby making it imperative to secure these components. The
use of software switches in modern cloud environments adds an addi-
tional layer of complexity, as it increases the number of potential attack
surfaces. In light of this, it is imperative that strong authentication and
authorization mechanisms are in place for network switches to enhance
the overall security of the infrastructure layer.
Is there a trend for the infrastructure-layer defense? In the 2010s,
there was an initial proposal to address the dependency on the control
plane by extending the functions of SDN switches. This approach aimed
to overcome limitations and enhance the capabilities of SDN switches.
Consequently, numerous OpenFlow switch extensions were proposed
during this period. However, with the emergence of programmable
switch architectures like P4, these proposals faced stiff competition
and gradually lost prominence. The programmable switch architecture
offered more flexibility and programmability, making it a preferred
choice over the extension of SDN switch functions.

6.4. Cross layer

As most SDN attacks exploit several vulnerabilities of SDN compo-
nents, it is necessary to design defenses across SDN layers. This section
explores cross-layer defenses that require the deployment of multiple
countermeasures in SDN architecture.

6.4.1. Monitoring
Current SDN architecture lacks authentication measures for data-

plane entities (e.g., switches, hosts), which is opposite to the original
design philosophy of SDN [5]. Researchers have proposed solutions that
ensure proper authentication of switches and hosts.

TopoGuard [52] presents a link-event authentication that writes a
switch signature into an LLDP packet. If another switch checks the
signature, it is possible to ensure that the LLDP packet is sent from
a trustworthy switch. SecureBinder [70] extends IEEE 802.1x protocol
that validates host MAC addresses with certificates signed by CA (Cer-
tification Authority). This effectively prevents attackers from spoofing
other host identifiers. DFI [101] proposes a more fine-grained access
control system that authenticates an end-host with identifiers such as
user- and host-names. With the centralized view of an SDN controller, it
enforces stateful ACL (Access Control List) rules according to the status
18

of a target host.
TopoGuard [52] proposes a system that filters unacceptable topol-
ogy events considering the state of switch ports. If a switch receives an
LLDP packet from a certain port where PORT_UP event3 was reported
before, the controller can ignore the event because the host is not
allowed to generate a topology event (i.e., link fabrication attack). To
defend the host identifier spoofing attack, TopoGuard periodically sends
a probe packet to a location where a PORT_DOWN event was detected.
This prevents a victim identifier from being hijacked by an attacker
during host migration. TopoGuard+ [69] complements the limitation
of TopoGuard by adding a link latency measurement module. It focuses
on the fact that a fake link will show abnormally high latency since
malicious hosts relay LLDP packets in the middle. SPHINX [67] pro-
poses a general framework that intercepts all OpenFlow messages and
builds a flow graph that reflects a current topology view. It captures the
anomaly such as fake link injection or identifier spoofing by verifying
host-switch-port binding on the graph.

Flow rule verification aims to check if data-plane states correspond
to network policies. It can thwart the rule manipulation attack or
violated rules from an application bug. Many prior studies use control-
message hooking techniques that capture control messages to check if
they correspond to intended network policies. VeriFlow [102] designs a
real-time invariant verification system that sits between the control and
infrastructure layer to intercept all OpenFlow messages. By modeling
traffic classes as equivalence classes, it enables fast analysis by looking
into the required parts of an address space, and pinpoints the violated
one. The flow graph proposed by SPHINX [67] can be used to verify
network invariants. For example, operators can specify the ‘‘waypoint’’
invariant that enforces a flow to pass through a certain point with a
policy language, and then SPHINX verifies the flow on the flow graph.
Ropke et al. [103] propose a system that compares control events
generated from apps and control messages applied to the data plane.
This prevents a malicious application (e.g., rootkit) from installing a
false flow rule that violates an operator’s network policies.

6.4.2. Program analysis
Application-level race conditions are mainly related to unexpected

bugs typically triggered in a dynamic environment, so it is hard to
find them from simple unit testing during a development phase. Thus,
finding hidden bugs requires a more advanced approach that considers
complicated interactions across multi-layers, but it requires manual
auditing, which is time-consuming and error-prone.

One line of research is to troubleshoot possible bug points by
analyzing controller traces (e.g., logs) with the help of dynamic instru-
mentation. It aims to pinpoint event sequences that may trigger bugs
to facilitate an operator’s debugging process. OFRewind [104] is a
traffic-replay tool that dynamically records control and data traffic and
reproduces them to find bugs when controller operations fail. STS [105]
leverages the delta debugging concept that localizes minimum code
snippets that are likely to raise exceptional cases. SDNRacer [81,82],
BigBug [83], and ConGuard [54] investigate happens-before causal-
ity relations from recorded event sequences to detect harmful race
conditions between multi-threaded applications.

A provenance graph is useful for knowing the causal relations of
a complex attack chain (see Fig. 14). Here, dynamic instrumentation
is also used to hook controller APIs and build the provenance graph.
ForenGuard [12] proposes a provenance-based root cause analysis
framework that dynamically records how an event is propagated from
the data plane to the control plane. ProvSDN [45] aims to locate a root
cause of cross-application poisoning attacks by backtracking poisoned
data that guides a victim application to make a harmful decision.
GitFlow [107] takes inspiration from version control systems, such as
Git, to create a versioned provenance graph that tracks the evolution

3 Most SDN controllers use PORT_UP and PORT_DOWN as host-specific
events that indicate whether a host-connected link is up or down.

Computer Networks 241 (2024) 110203J. Kim et al.

i
W

t
i

of flow states. In contrast, PicoSDN [106] offers a more comprehensive
provenance graph to tackle the limitations of previous approaches.
These limitations include difficulties with managing dependencies and
a lack of complete provenance information that hinders the ability
to detect cross-plane attacks. Besides, the provenance-based defenses
also utilize static analysis for pre-processing API call chains before
instrumentation [12,45].
Summary. Many countermeasures in SDN require monitoring or mod-
fication of multiple SDN components to capture a suitable context.
hy is the cross-layer defense important? Some attacks involve a long

penetration route that is composed of multiple SDN components. To
prevent this, it is often necessary to monitor events and messages across
layers so that a network operator can obtain a holistic view. This is
the reason why many provenance-based forensic systems, which collect
evidence from multiple components, have been proposed recently.

7. Use cases

In this section, we explore the practical application of our tax-
onomies and classifications. We elaborate on how practitioners can
leverage our survey to bolster the security of SDN. This includes an
in-depth analysis of various use cases and case studies, incorporating
real-world SDN attack scenarios from a penetration perspective.

7.1. Utilizing penetration routes for proactive defenses

As with the dynamic evolution observed in contemporary mal-
ware behavior, attacks on SDN have become increasingly sophisticated,
marked by the deployment of diverse techniques and the exploitation
of various layers and components within the network. This complexity
poses a significant challenge in accurately identifying the root cause
and pinpointing vulnerable components during an attack, creating
operational difficulties for network operators.

To tackle these challenges, operators can employ proactive defense
mechanisms, informed by our comprehensive research and analysis.
Our survey contributes to this domain by shedding light on recent
trends in SDN attacks, notably emphasizing the prevalence of a bottom-
up penetration route (e.g., host-to-controller). Given these insights, it
is crucial for operators to meticulously scrutinize potential implemen-
tation flaws, particularly those related to host events on a switch and
interactions with the southbound interface of a controller.

7.2. Predicting unexplored penetration routes

Our results provide predictive insights into potential future pen-
etration routes that have remained underexplored. While Section 5
introduces various penetration routes, the controller-to-controller route
has yet to be investigated in prior research. Section 8.2.3 underscores
the prevalence of distributed controllers in large-scale SDN deploy-
ments, aimed at enhancing scalability and fault-tolerance. However, the
vulnerability inherent in such configurations, particularly the risk of a
compromised controller initiating attacks on other controllers, has not
been adequately addressed in prior studies.

Moreover, it has been uncovered that the application-to-host route
remains untapped. We posit that this avenue is viable, given that a
malicious application could dispatch a packet to a host through north-
bound interfaces. For instance, OpenFlow facilitates the PACKET_OUT
message, directing a switch to transmit a queued packet [44]. How-
ever, by configuring in_port to OFPP_CONTROLLER, one can potentially
dispatch a CPU-generated packet originating from a controller. Con-
sequently, a malicious controller could transmit a harmful payload,
exploiting vulnerabilities in the target host.

7.3. Identifying vulnerable layers and components

Operators can leverage our findings to quantitatively identify vul-
19

nerable layers and components within their network. To facilitate this e
Fig. 15. The density of each component across all penetration routes.

analysis, one can compute the density, representing the frequency of
each component across all penetration routes. Fig. 15 illustrates the
density derived from Table 2, where we tally the occurrences of each
component as a source, middle, or target in penetration routes. Notably,
the controller emerges as a frequent target due to its pivotal role as
the network’s core. Concurrently, applications and hosts often serve
as the starting points for penetration routes, aligning with their status
as primary threat sources. Lastly, switches are commonly exploited as
middle nodes, given their close association with the controller.

7.4. Correlating penetration routes with shadow CVEs

In response to the escalating concern regarding SDN security, there
has been a concerted effort among security researchers to identify vul-
nerabilities, with a particular focus on communicating their findings to
vendors. The Common Vulnerability Exposure (CVE) trend, exemplified
in Fig. 16, underscores a discernible rise in the number of identified
vulnerabilities within prominent open-source SDN controllers, includ-
ing ONOS, OpenDaylight, and Floodlight. Recent publications on SDN
security meticulously document these vulnerabilities, resulting in the
issuance of corresponding CVEs and providing operators with a com-
prehensive understanding of potential risks. Nevertheless, a significant
portion of older papers omit explicit references to CVEs, even when
vulnerabilities are reported concurrently, a phenomenon referred to as
‘‘shadow CVEs’’, a term we define to encapsulate instances of unac-
knowledged vulnerabilities. This oversight has the potential to leave
operators with insufficient knowledge. To bridge this gap, we pro-
pose aligning presented penetration routes with these shadow CVEs,
acknowledging the inherent challenge while emphasizing the invalu-
able insights such connections offer into the intricacies of security
vulnerabilities.

7.5. Real-world case studies

In this section, we present case studies with attack scenarios to
illustrate the utilization of surveyed penetration routes and defenses.
These cases assume the deployment of ONOS [42], acknowledged as
one of the most widely used SDN controllers.

7.5.1. Case study 1 – buffered packet hijacking
The concept of buffered packet hijacking [46] illustrates application-

o-switch penetration (see Section 5.2), wherein a malicious application
llicitly directs a switch to transmit a buffered packet. As previously
xplained, when a switch receives an unfamiliar packet, it dispatches

Computer Networks 241 (2024) 110203J. Kim et al.

l
2

a
t
a
I
e
s
m
m
v
a
S
e
t
t

a
c
t
a
o
m
t
b
t
a
d
t
v
p
c
t
o

7

t
d
c
t
S
O
t
d
i
c
s

t
s
f
c
a
i
i
t
i
i

7

p
s
w
m
m
t
a
o

t
r
t
o
a
9
f
m
o

7

i
s
m
o
t
a
o
t
i
s
p
r
S
f
s
s

8

r

8

8

o
d
h

Fig. 16. The number of CVEs reported per year for popular controllers (Note that the
ines denote trend lines.). We omit the year where no CVEs are reported (e.g., 2016,
021, 2022).

PACKET_IN message to a controller while concurrently buffering
he packet (identified by an assigned buffer ID). The essence of this
ttack involves injecting a FLOW_MOD message that contains a buffer
D identical to the one in the corresponding PACKET_IN message,
ven without comprehensive knowledge of its complete header. Con-
equently, the switch forwards the buffered packet, irrespective of the
alicious application’s lack of responsibility. To execute this attack, the
alicious application illegally invokes an interface (e.g., PacketSer-
ice) to retrieve incoming packets. Subsequently, it needs to invoke
n interface that generates a rule-installation event (e.g., FlowRule-
ervice), spoofing the buffer ID in a matching manner. Finally, the
vent is transformed into an OpenFlow message (i.e., FLOW_MOD)
hrough a southbound interface (e.g., OpenFlowRuleProvider) of
he controller, thereby installing a rule on the flow table of the switch.

According to Table 2, the root causes of buffered packet hijacking
re (i) lack of NBI (Northbound Interface) authorization, (ii) lack of
ontrol event integrity, and (iii) implementation flaws. Additionally,
his application-to-switch penetration involves multiple layers. Oper-
tors can select suitable defenses for each root cause and layer, as
utlined in Table 4. First, operators can employ the NBI permission
odel, exemplified by Security-Mode ONOS (refer to Section 6.1.2),

o prevent unauthorized applications from illicitly accessing the north-
ound interfaces. Also, the use of control-message blackbox fuzzing
ools (e.g., DELTA [58], BEADS [61]) can help pinpoint the code where
n event with a spoofed buffer ID is bypassed, even when its header
iffers from that on the switch. Operators can then apply patches to
he code to mitigate this vulnerability. Lastly, data-plane invariant
erification, such as VeriFlow [102], proves valuable in scrutinizing
olicy disparities between the controller and switches. An operator
ould discover that the rule installed on a switch is not intended by
he controller. In summary, by understanding the penetration route,
perators can strategically deploy necessary defenses.

.5.2. Case study 2 – cross-plane attack
The cross-plane attack [72] exemplifies host-to-controller penetra-

ion, as detailed in Section 5.4.3. In this scenario, a malicious host
ispatches a dummy packet with a broadcast IP address, syntacti-
ally correct but invalid for normal host identification. This packet
riggers the switch to send a PACKET_IN message to the controller.
ubsequently, if the controller has not previously discovered this host,
NOS’s HostManager generates a HOST_UPDATE event. However,

his event lacks associated host information due to the invalid IP ad-
ress, causing another security application (e.g., acl in ONOS) to fail
n installing a blocking rule. The issue arises as the host is erroneously
onsidered approved by acl, allowing subsequent packets to bypass
ecurity measures and violating established security policies.
20

a

The root causes of this attack include (i) the lack of event in-
egrity checks, (ii) the lack of message integrity checks, and (iii) in-
ufficient host/switch authentication (refer to Table 2). Given these
actors and the multi-layered nature of the penetration, an operator
ould employ two cross-layer defenses outlined in Table 4. First, host
uthentication mechanisms, such as SecureBinder [61], can aid in
dentifying only authenticated hosts, preventing malicious hosts from
njecting unauthorized packets. Second, topology event verification
ools (e.g., TopoGuard [52], TopoGuard+ [69]) can assist in recogniz-
ng invalid messages and events, particularly those associated with host
nformation (e.g., broadcast IP addresses).

.5.3. Case study 3 – flow table overloading
Flow table overloading [21,64,67,68,80] constitutes host-to-switch

enetration, wherein a malicious host inundates a switch with a mas-
ive number of packets (see Section 5.5.3). The objective is to over-
helm the flow table of the switch by triggering numerous table
ismatches, leading to the generation of PACKET_IN and FLOW_MOD
essages, and the installation of an excessive number of flow rules on

he switch. Given the limited availability of the switch’s TCAM, this
ttack exhausts most of the switch resources, impeding the installation
f other essential rules.

While the attack follows a straightforward penetration route be-
ween a host and a switch, it also impacts the controller since flow
ules are installed by the controller via FLOW_MODs (i.e., lack of con-
roller resource control in Table 2). Consequently, the attack introduces
verhead on the controller as well. To mitigate this, the solutions
ddressing controller resources, such as malicious switch detection [97–
9] and proactive rule installation [65,68], can be beneficial. The
ormer enables the detection of abnormal switches that generate nu-
erous PACKET_INs, while the latter involves the proactive installation

f a minimal set of rules to prevent table mismatches.

.5.4. Implication
An in-depth exploration of these case studies highlights the critical

mportance of understanding penetration routes for enhancing network
ecurity within the SDN environment. By carefully mapping out how
alicious entities might infiltrate and exploit system vulnerabilities,

perators gain invaluable foresight. This strategic insight empowers
hem to take preemptive measures, deploying a range of defense mech-
nisms to effectively thwart potential security breaches before they
ccur. The penetration route serves as a guiding blueprint for operators
o deploy targeted, layered defensive measures that align precisely with
dentified vulnerabilities, optimizing resource allocation and bolstering
ystem resilience. As exemplified in the presented case studies, the
ractical application of penetration route analysis has played a pivotal
ole in safeguarding the integrity, confidentiality, and availability of the
DN ecosystem, preempting a wide spectrum of sophisticated attacks
rom Buffered Packet Hijacking to Flow Table Overloading. This under-
cores its efficacy as an indispensable component of modern network
ecurity strategy.

. Future research directions

Prior to concluding our remarks, we illuminate the prospective
esearch directions for each SDN layer.

.1. Application layer

.1.1. Designing fingerprinting-resistant SDN
As discussed in Section 5.5.1, fingerprinting internal information

f SDN poses significant security challenges. Whereas some potential
efenses have been discussed in Refs. [73,76,77], none of them yet
ave proposed a clear solution. Here, we suggest the following two
pproaches to make SDN robust to fingerprinting attacks.

Computer Networks 241 (2024) 110203J. Kim et al.
Fig. 17. An illustration of an obfuscation service inside an SDN controller. It obfuscates
the timing intervals of control packets for installing flow rules so that an attacker cannot
learn traffic patterns.

The first approach aims to incorporate a robust and adaptive ob-
fuscation service within the application layer of SDN. Functioning like
a proxy, it directs the output messages of various applications as they
operate routinely. In this context, the service may employ the insertion
of consistent timing intervals on the control channel, effectively pre-
venting attackers from inferring confidential information by learning
timing patterns [76,77]. Fig. 17 illustrates an example of this service.
However, it is crucial to recognize that adopting this approach entails a
trade-off between performance and security. As a result, the obfuscation
service may establish a priority hierarchy among applications within
the SDN application layer.

The second approach seeks to create SDN applications that pos-
sess inherent resilience against fingerprinting attacks. This involves
implementing a coordinated and consistent response strategy to conceal
any discernible patterns. By standardizing how applications respond to
particular network requests or anomalies, it becomes more challenging
for attackers to deduce specific application behaviors or detect the
presence of certain policies [55,56,73–75]. Specifically, this approach
may involve the incorporation of dummy messages exchanged between
a controller and switches. However, it is evident that performance over-
head is inevitable; hence, appropriate optimization techniques should
be introduced.

In conclusion, the proposed strategies aim to enhance the secu-
rity posture of SDNs against internal information fingerprinting. By
obfuscating traffic patterns and providing fingerprinting-resistant ap-
plications, it is possible to significantly diminish the effectiveness of
network fingerprinting techniques. Future research should focus on
developing and evaluating these approaches in real-world scenarios,
assessing their efficacy in protecting against sophisticated network
reconnaissance methods.

8.1.2. Solving policy inconsistencies in large-scale SDN
As explored in Section 5.1.2, the absence of state synchroniza-

tion between a controller and switches gives rise to policy inconsis-
tencies. While ad-hoc remedies have been suggested for small-scale
SDN deployments, the burgeoning expansion of the networking land-
scape introduces challenges in identifying policy inconsistencies in
practical scenarios. This challenge becomes especially pronounced for
graph-based detection mechanisms; as network topologies expand, the
intricacy of detection escalates, potentially making it impracticable.

In order to enhance the identification of inconsistencies within
extensive SDN environments, the utilization of tagging emerges as a
viable solution. Inconsistencies are discerned through a comparative
analysis of tags, which are updated as the packet follows the anticipated
path in the control plane, against those updated subsequent to the
authentic movement of the packet. Prior investigations, as outlined in
a recent study [113], have evidenced the minimal overhead incurred
21
Fig. 18. An illustration of a policy verification system in AS-level network topology.
It checks whether the packet is correctly sent from AS A to AS C by inspecting its tag.

by this methodology within experimental settings. Consequently, the
logical progression involves the application of this approach to large-
scale SDN within practical environments. Fig. 18 illustrates exemplifies
the tag-based policy verification system in AS-level network topology.

As such, detecting policy inconsistencies is crucial, but proactively
preventing them is even more important. Inconsistencies may arise due
to issues related to the trustworthiness and standardization of network
applications. For instance, a vendor might offer a network application
that conflicts with other applications provided by different vendors,
potentially leading to policy conflicts and resultant inconsistencies.
Additionally, the open programmability of these systems allows for
rule modifications, further increasing the risk of inconsistency. To
mitigate these issues, more stringent policy management APIs should be
established and rigorously validated.

8.2. Control layer

8.2.1. Implementing zero trust paradigm in SDN
Within the framework of a zero-trust model, the prevailing security

protocols at the application layer bear similarities to a traditional
perimeter-based defense system. For instance, the current SDN per-
mission model, as illustrated by Security-Mode ONOS [15], primarily
evaluates whether a specific application holds the essential permissions
at a particular layer. If the application indeed possesses the requi-
site permissions, the controller places trust in all ensuing actions of
the application. Furthermore, messages emanating from a switch are
deemed trustworthy once it establishes a connection with a controller.
This mirrors the methodology employed by a perimeter-based defense
system.

Thus, in forthcoming research, it is imperative to integrate the zero-
trust paradigm into SDN, scrutinizing all layers for events without
relying on inherent trust. Architecturally, the SDN controller, with its
comprehensive oversight of application and network events, emerges as
an optimal locus for such implementation. A notable challenge lies in
effectively monitoring and verifying the multitude of events originating
from expansive SDN environments, particularly in large-scale settings
like WANs and data centers. Consequently, the forthcoming research
focus should pivot towards designing a monitoring system adept at
capturing all pertinent events while ensuring optimal performance in
the face of the inherent scalability of practical SDN environments.

8.2.2. Finding vulnerabilities in O-RAN architecture
A current trend in the application of SDN involves Open Radio

Access Network (O-RAN) [114], an emerging architectural framework
designed to enable the programmable management of cellular net-
works. O-RAN has incorporated various software technologies, includ-
ing SDN and containers, to enhance flexibility, garnering significant
attention in recent times. Nevertheless, akin to the challenges posed
by initial SDN architectures, O-RAN introduces potential vulnerabilities
that demand careful examination. Therefore, it is imperative to assess
potential threats and formulate appropriate security measures.

Computer Networks 241 (2024) 110203J. Kim et al.
Fig. 19. An illustration of potential threats in the Near-RT RIC; a malicious xAPP can
execute harmful actions, or a malevolent RAN node (e.g., a malicious DU) may engage
in detrimental behaviors.

Within the O-RAN framework, the Near-Real Time RAN Intelligent
Controller (Near-RT RIC) operates as a logically centralized entity,
resembling an SDN controller, with oversight of both Control Units
(CUs) and Distributed Units (DUs). Connectivity between RAN nodes
and the Near-RT RIC takes place through an E2 interface, mirroring the
southbound interface in SDN. It is essential to highlight the adaptability
of the E2 interface to various RAN node vendors, introducing increased
complexity during implementation. Due to its recent integration into
the control layer, there is a potential for an unforeseen penetration
route, such as a bottom-up penetration route by a malicious DU, as
illustrated in Fig. 19, resembling the switch-to-controller penetration
in SDN. Furthermore, the Near-RT RIC hosts multiple xApps akin to
SDN applications, where a malicious xApp can potentially access the E2
interface through the internal messaging infrastructure. Significantly,
vulnerabilities in the Near-RT RIC are of utmost concern, given its
mandated time scale of at most ⩽ 1000 ms. This underscores the
urgency and significance of addressing security concerns to ensure the
robustness and reliability of the O-RAN framework.

To mitigate the risk of unforeseen vulnerabilities, the use of fuzzing
is recommended. Specifically, the E2 interface comprises two proto-
cols: E2AP (E2 Application Protocol) and E2SM (E2 Service Model).
Although standards for both protocols have been established by the
O-RAN Alliance [115,116], variations in implementation are possible
across different vendors, potentially leading to flaws. As a preven-
tive measure, one can utilize generation-based fuzzing, generating in-
puts based on the protocol specifications to systematically assess and
uncover potential vulnerabilities.

8.2.3. Finding vulnerabilities in distributed controllers
With the significant growth of modern networking environments, it

has become apparent that relying on a single SDN controller is insuffi-
cient to efficiently orchestrate the enormous underlying traffic. As a so-
lution, distributed SDN architectures have emerged, aiming to alleviate
the burdensome overload on a single centralized controller and ensure
its resiliency through a fault-tolerant system. However, while vulner-
abilities within a single controller environment have been extensively
studied, the security implications of distributed SDN architectures have
not received thorough investigation. Therefore, it is crucial to delve into
the security issues that may arise from the distributed SDN architecture,
in order to identify and address potential vulnerabilities and strengthen
the overall security of such environments.

Furthermore, modern distributed SDN architectures have under-
gone constant evolution. As an example, the ONOS project [42] re-
cently separated its underlying distributed storage into an indepen-
dent project named Atomix [117]. This separation allows operators
22
Fig. 20. An illustration of a potential threat in distributed SDN controllers. A poisoned
state injected by the malicious controller can be propagated to other controllers without
validation.

to design clusters that incorporate controllers and storage with cus-
tomizable configurations, providing flexibility for various use cases
that require distributed systems. However, it is important to recognize
that this newly emerged structure may introduce new attack surfaces,
presenting potential vulnerabilities for attackers to exploit. Therefore,
careful consideration and analysis of the security implications are
necessary to ensure the robustness and resilience of these distributed
SDN architectures.

An example of an unresolved issue in SDN is the presence of a
malicious application that can potentially impact control-layer opera-
tions, even when employing multi-controller or distributed controller
setups. This issue arises from the prevailing design of distributed con-
trollers, which follows a physically distributed but logically centralized
architecture. In this architecture, states made by a single controller
are replicated across all controllers, creating a vulnerability where the
entire system can be compromised if a malicious controller successfully
manipulates these states (see Fig. 20). Therefore, there is a need to
address this security concern and explore alternative architectural de-
signs or mechanisms to mitigate the risk of such malicious control-layer
operations.

8.2.4. Microservices and SDN security
Distributed deployments of SDN controllers have enhanced scala-

bility but involve unnecessary replication of the entire SDN controller
functionality. To tackle this, a newer approach, the microservice-based
SDN controller [118,119], has emerged. Leveraging microservices en-
ables the construction of a system composed of small, diverse com-
ponents. This architectural approach facilitates the separation of SDN
functions and allows for on-demand scaling of resource-intensive tasks
without necessitating full-scale replication.

However, the partitioning of internal SDN functions into microser-
vices introduces a series of new security considerations, due to the
architectural characteristics of microservices. These considerations ex-
tend to concerns related to inter-service communication, necessitat-
ing the implementation of robust authentication and authorization
mechanisms to manage access between microservices, which are SDN
functions partitioned into smaller and more fine-grained components.
Also, the security of APIs that facilitate communication between such
microservices becomes of paramount importance, as any vulnerabilities
in these interfaces could potentially be exploited by malicious entities.

Additionally, akin to the approach employed by distributed SDN
controllers, which have integrated distributed storage solutions such as
Atomix to uphold group management and data consistency, replicating
these capabilities within microservices becomes a critical imperative,
especially when microservices require concurrent access to the same
networking resources. Furthermore, in scenarios where multiple mi-
croservices actively engage in transactions or data updates, ensur-
ing the preservation of transactional consistency takes center stage.

Computer Networks 241 (2024) 110203J. Kim et al.
Fig. 21. An illustration of a protocol state fuzzer for SDN switches.

This necessitates the implementation of robust distributed transaction
mechanisms, particularly within the dynamic and scaling container
environment inherent to microservices.

8.3. Infrastructure layer

8.3.1. Verifying implementation inconsistency in SDN switches
OpenFlow serves as the de facto standard protocol facilitating com-

munication between controllers and switches. Since the publication
of its official specification (v1.0.0) in 2009, the protocol has evolved
significantly, incorporating numerous new features and meeting var-
ious requirements, culminating in the latest version (v1.5.0) [44].
However, this evolution has introduced complexities, potentially result-
ing in inconsistencies between the specification and actual OpenFlow
implementations. Notably, we contend that SDN switches might harbor
many implementation inconsistencies, as the scrutiny directed at SDN
controllers has overshadowed attention to SDN switches. Moreover, the
proliferation of switch vendors further amplifies the diversity in switch
implementations, contributing to potential challenges in maintaining
consistency across the ecosystem.

To tackle this challenge, it is imperative to conduct thorough testing
of switch implementations to ensure their adherence to specifications.
However, this task is inherently demanding due to the intricacies of the
OpenFlow specification, which significantly expands the search space.
To address this complexity, we propose the adoption of protocol state
fuzzing as a testing methodology. This approach identifies undesired
states in switch implementations by learning a protocol state machine.
It achieves this by systematically sending a series of inputs to a target
switch and analyzing the corresponding outputs. Subsequently, the
learned state machine is compared against the official specification to
identify any disparities. By employing this technique, we can streamline
the search space, enhancing the efficiency of pinpointing discrepan-
cies between a switch implementation and the specified standards. In
Fig. 21, we propose a design of a protocol state fuzzer for SDN switches,
which adopts this technique.

8.3.2. Finding vulnerabilities in programmable switches
Programmable switches have emerged as the next revolutionary

paradigm for innovative networking research, extending beyond the
scope of SDN. This system empowers network operators to define
the behavior of network devices at a granular level, enabling precise
control over how each packet is processed. An exemplary technology
in this domain is P4 [120], which has garnered support from both
academia and industry due to its capacity to customize packet process-
ing logic while maintaining line-rate performance. This unprecedented
level of control and customization facilitates the creation of networks
tailored to specific requirements, leading to improved efficiency and
23
Fig. 22. An illustration of a potential threat in the programmable data plane (e.g., P4
switches). A buggy program may allow malicious traffic to bypass access control.

enhanced overall performance. The programmable data plane holds
immense potential for driving further advancements in networking
technology and propelling the field into new dimensions of innovation
and optimization.

However, despite the increasing adoption of programmable data
planes, their security aspect has not received sufficient attention. This
lack of focus on security could inadvertently lead to an expanded attack
surface, primarily due to the following reasons:

First, the introduction of significant complexity through P4’s ca-
pability to define every aspect of packet processing could pose a
security risk. For example, the Intel Tofino ASIC implements the TNA
(Tofino Native Architecture), a custom P4 architecture that supports
advanced capabilities necessary for implementing complex software
programs [121]. This granular level of control afforded by P4 may
potentially lead to the presence of bugs and vulnerabilities, which
attackers could exploit to disrupt the network or gain unauthorized
access to sensitive data. The fine-grained customization allowed by P4,
while empowering network operators, also requires careful attention to
ensure robust security measures are in place.

Second, while P4 facilitates the rapid development and deployment
of new network functions, this advantage may inadvertently encourage
the use of unverified or insecure code, as it lacks robust testing and
verification frameworks [122]. As a consequence, the potential pres-
ence of unvetted code in the programmable data plane could introduce
vulnerabilities that attackers could exploit to compromise network
policies or exploit sensitive information (Fig. 22). Thus, ensuring proper
testing and verification of code within the programmable data plane
becomes crucial to mitigate such security risks and maintain the overall
resilience of the network.

Third, P4’s philosophy of user-centric control over the data plane
implies that security heavily relies on user behavior. Consequently, in-
secure practices by users can potentially expose the network to various
types of attacks. The level of customization and control offered by P4
puts a significant responsibility on network operators to implement
secure configurations and adhere to best security practices. Failure
to do so could create vulnerabilities and avenues for exploitation by
malicious actors. Therefore, it is crucial to raise awareness among
users about the security implications of their actions and promote a
security-first mindset when designing and operating networks using
programmable data planes.

Lastly, the dynamic nature of programmable data planes can pose
challenges to conventional network monitoring systems, making real-
time detection of attacks particularly difficult [123,124]. The fine-
grained customization and constant changes in packet processing logic
create complexities for traditional monitoring tools to accurately detect
and respond to emerging threats. As a result, attackers may exploit
this gap in real-time detection to carry out sophisticated attacks that
evade traditional security measures. Addressing this issue requires the
development of advanced monitoring and detection mechanisms that

Computer Networks 241 (2024) 110203J. Kim et al.

e

D

c
i

D

A

E
b
K
b
t

R

can adapt to the dynamic nature of programmable data planes and
effectively identify potential security breaches in real time, thereby
ensuring a robust defense against emerging threats.

9. Conclusion

In this paper, we have conducted a comprehensive examination of
SDN security, encompassing a review of both attacks and defenses. Our
contribution includes the introduction of novel taxonomies, specifically
focusing on penetration routes and root causes. We have categorized
existing attacks based on penetration routes and defenses according to
their respective layers. Through a detailed exploration of motivations,
approaches, and fundamental security issues, we have identified critical
areas that merit increased attention.

While numerous researchers have dedicated efforts to analyzing
potential vulnerabilities and devising practical defenses in the realm of
SDN, our conclusion emphasizes the need for heightened consideration
of SDN controller security. The secure communication between the
control and data planes emerges as a pivotal aspect that requires more
in-depth investigation.

Furthermore, recognizing the ongoing trend of "softwarization" ex-
tending to the data plane, we advocate for an intensified exploration of
security issues in this layer by security researchers. By shedding light
on the existing landscape of SDN security and delineating potential
future research directions, we aim to catalyze further advancements in
safeguarding SDN architectures.

CRediT authorship contribution statement

Jinwoo Kim: Writing – review & editing, Writing – original draft,
Investigation, Conceptualization. Minjae Seo: Writing – review & edit-
ing, Writing – original draft, Investigation, Conceptualization. Seung-
soo Lee: Writing – review & editing. Jaehyun Nam: Writing – review
& editing. Vinod Yegneswaran: Writing – review & editing. Phillip
Porras: Writing – review & editing. Guofei Gu: Writing – review &
diting. Seungwon Shin: Writing – review & editing, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgment

We express our sincere gratitude to the anonymous reviewers of
lsevier Computer Networks for their invaluable comments and feed-
ack. The present research has been conducted by the Research Grant of
wangwoon University in 2022. Also, this work was partially supported
y the National Research Foundation of Korea (NRF) grant funded by
he Korea government (MSIT) (No. RS-2022-00166401).

eferences

[1] A. Greenberg, G. Hjalmtysson, D.A. Maltz, A. Myers, J. Rexford, G. Xie, H.
Yan, J. Zhan, H. Zhang, A clean slate 4D approach to network control and
management, ACM SIGCOMM Comput. Commun. Rev. (2005).

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, OpenFlow: Enabling innovation in campus networks, ACM
SIGCOMM Comput. Commun. Rev. (2008).

[3] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown,
G. Parulkar, FlowVisor: A Network Virtualization Layer, OpenFlow Switch
24

Consortium, Tech. Rep, 2009.
[4] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A.
Wang, J. Stringer, P. Shelar, et al., The design and implementation of open
vSwitch, in: Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation, USENIX, 2015.

[5] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. McKeown, S. Shenker, Ethane:
Taking control of the enterprise, ACM SIGCOMM Comput. Commun. Rev.
(2007).

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J.
Wanderer, J. Zhou, M. Zhu, et al., B4: Experience with a globally-deployed
software defined WAN, ACM SIGCOMM Comput. Commun. Rev. (2013).

[7] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Baner-
jee, N. McKeown, ElasticTree: Saving energy in data center networks, in:
Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation, USENIX, 2010.

[8] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, R. Watten-
hofer, Achieving high utilization with software-driven WAN, in: Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security, ACM,
2013.

[9] S. Shin, L. Xu, S. Hong, G. Gu, Enhancing network security through Software
Defined Networking (SDN), in: Proceedings of the International Conference on
Computer Communication and Networks, IEEE, 2016.

[10] S.W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, M. Tyson, et al.,
FRESCO: Modular composable security services for software-defined networks,
in: Proceedings of the Network & Distributed System Security Symposium,
Internet Society, 2013.

[11] S.K. Fayaz, Y. Tobioka, V. Sekar, M. Bailey, Bohatei: Flexible and elastic DDoS
defense, in: Proceedings of the USENIX Security Symposium, USENIX, 2015.

[12] H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y. Zhang, G. Gu, Towards fine-
grained network security forensics and diagnosis in the SDN era, in: Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security,
ACM, 2018.

[13] Z.A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, M. Yu, SIMPLE-fying
middlebox policy enforcement using SDN, in: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, ACM, 2013.

[14] S.K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, J.C. Mogul, Enforcing network-
wide policies in the presence of dynamic middlebox actions using FlowTags,
in: Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation, USENIX, 2014.

[15] C. Yoon, S. Shin, P. Porras, V. Yegneswaran, H. Kang, M. Fong, B. O’Connor,
T. Vachuska, A security-mode for carrier-grade SDN controllers, in: Proceedings
of the Annual Computer Security Applications Conference, 2017.

[16] X. Wen, B. Yang, Y. Chen, C. Hu, Y. Wang, B. Liu, X. Chen, SDNShield:
Reconciliating configurable application permissions for SDN app markets, in:
Proceedings of the Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, IEEE, 2016.

[17] P.A. Porras, S. Cheung, M.W. Fong, K. Skinner, V. Yegneswaran, Securing the
software defined network control layer, in: Proceedings of the Network and
Distributed System Security Symposium, Internet Society, 2015.

[18] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran, J.
Noh, B.B. Kang, Rosemary: A robust, secure, and high-performance network
operating system, in: Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, 2014.

[19] S. Lee, C. Yoon, S. Shin, The smaller, the shrewder: A simple malicious
application can kill an entire SDN environment, in: Proceedings of the ACM
International Workshop on Security in Software Defined Networks & Network
Function Virtualization, ACM, 2016.

[20] C. Röpke, T. Holz, SDN rootkits: Subverting network operating systems of
software-defined networks, in: Proceedings of the International Symposium on
Recent Advances in Intrusion Detection, Springer, 2015.

[21] S. Shin, G. Gu, Attacking software-defined networks: A first feasibility study,
in: Proceedings of the ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ACM, 2013.

[22] H. Wang, L. Xu, G. Gu, FloodGuard: A DoS attack prevention extension in
software-defined networks, in: Proceedings of the Conference on Dependable
Systems and Networks, IEEE, 2015.

[23] S. Shin, V. Yegneswaran, P. Porras, G. Gu, AVANT-GUARD: Scalable and vigilant
switch flow management in software-defined networks, in: Proceedings of the
ACM SIGSAC Conference on Computer & Communications Security, 2013.

[24] D. Kreutz, F.M. Ramos, P. Verissimo, Towards secure and dependable software-
defined networks, in: Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, 2013.

[25] S. Scott-Hayward, S. Natarajan, S. Sezer, A survey of security in software
defined networks, IEEE Commun. Surv. Tutor. (2015).

[26] I. Ahmad, S. Namal, M. Ylianttila, A. Gurtov, Security in software defined
networks: A survey, IEEE Commun. Surv. Tutor. (2015).

[27] I. Alsmadi, D. Xu, Security of software defined networks: A survey, Comput.

Secur. 53 (2015) 79–108.

http://refhub.elsevier.com/S1389-1286(24)00035-5/sb1
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb1
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb1
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb1
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb1
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb2
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb2
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb2
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb2
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb2
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb19
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb26
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb26
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb26
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb27
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb27
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb27

Computer Networks 241 (2024) 110203J. Kim et al.
[28] Q. Yan, F.R. Yu, Q. Gong, J. Li, Software-defined networking (SDN) and
distributed denial of service (DDoS) attacks in cloud computing environments:
A survey, some research issues, and challenges, IEEE Commun. Surv. Tutor. 18
(1) (2015) 602–622.

[29] S. Khan, A. Gani, A.W.A. Wahab, M. Guizani, M.K. Khan, Topology discovery
in software defined networks: Threats, taxonomy, and state-of-the-art, IEEE
Commun. Surv. Tutor. 19 (1) (2016) 303–324.

[30] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras, G. Gu,
Flow wars: Systemizing the attack surface and defenses in software-defined
networks, IEEE/ACM Trans. Netw. (2017).

[31] A. Shaghaghi, M.A. Kaafar, R. Buyya, S. Jha, Software-Defined Network (SDN)
data plane security: Issues, solutions, and future directions, in: Handbook of
Computer Networks and Cyber Security: Principles and Paradigms, Springer,
2020, pp. 341–387.

[32] J.C.C. Chica, J.C. Imbachi, J.F.B. Vega, Security in SDN: A comprehensive
survey, J. Netw. Comput. Appl. 159 (2020) 102595.

[33] B. Rauf, H. Abbas, M. Usman, T.A. Zia, W. Iqbal, Y. Abbas, H. Afzal, Application
threats to exploit northbound interface vulnerabilities in software defined
networks, ACM Comput. Surv. 54 (6) (2021) 1–36.

[34] M.B. Jimenez, D. Fernandez, J.E. Rivadeneira, L. Bellido, A. Cardenas, A survey
of the main security issues and solutions for the SDN architecture, IEEE Access
9 (2021) 122016–122038.

[35] M. Rahouti, K. Xiong, Y. Xin, S.K. Jagatheesaperumal, M. Ayyash, M. Shaheed,
SDN security review: Threat taxonomy, implications, and open challenges, IEEE
Access 10 (2022) 45820–45854.

[36] A. Melis, A. Al Sadi, D. Berardi, F. Callegati, M. Prandini, A systematic literature
review of offensive and defensive security solutions with software defined
network, IEEE Access (2023).

[37] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, S. Shenker,
NOX: Towards an operating system for networks, ACM SIGCOMM Comput.
Commun. Rev. (2008).

[38] Z. Cai, A.L. Cox, T. Ng, Maestro: A System for Scalable OpenFlow Control, Tech.
Rep., 2010.

[39] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R.
Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al., Onix: A distributed control
platform for large-scale production networks, in: Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation, USENIX, 2010.

[40] Floodlight controller, 2023, https://github.com/floodlight/floodlight.
[41] D. Erickson, The beacon OpenFlow controller, in: Proceedings of the ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking, 2013.
[42] ONOS Github repository, 2022, https://github.com/opennetworkinglab/onos.
[43] OpenDaylight Github repository, 2023, https://github.com/opendaylight/.
[44] OpenFlow switch specification v1.5.1, 2014, https://opennetworking.org/wp-

content/uploads/2014/10/openflow-switch-v1.5.1.pdf.
[45] B.E. Ujcich, S. Jero, A. Edmundson, Q. Wang, R. Skowyra, J. Landry, A.

Bates, W.H. Sanders, C. Nita-Rotaru, H. Okhravi, Cross-app poisoning in
software-defined networking, in: Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, ACM, 2018.

[46] J. Cao, R. Xie, K. Sun, Q. Li, G. Gu, M. Xu, When match fields do not need to
match: Buffered packet hijacking in SDN, in: Proceedings of the Network and
Distributed System Security Symposium, Internet Society, 2020.

[47] Y. Zhou, X. Jiang, Dissecting android malware: Characterization and evolution,
in: Proceedings of the IEEE Symposium on Security and Privacy, IEEE, 2012.

[48] H. Kang, S. Shin, V. Yegneswaran, S. Ghosh, P. Porras, AEGIS: An automated
permission generation and verification system for SDNs, in: Proceedings of the
Workshop on Security in Softwarized Networks: Prospects and Challenges, 2018.

[49] S. Lee, S. Woo, J. Kim, V. Yegneswaran, P. Porras, S. Shin, AudiSDN: Automated
detection of network policy inconsistencies in software-defined networks, in:
Proceedings of the IEEE Conference on Computer Communications, IEEE, 2020.

[50] L. Felix, Router exploitation, 2009, Black Hat Briefings USA.
[51] K. Thimmaraju, B. Shastry, T. Fiebig, F. Hetzelt, J.-P. Seifert, A. Feldmann,

S. Schmid, Taking control of SDN-based cloud systems via the data plane, in:
Proceedings of the Symposium on SDN Research, 2018.

[52] S. Hong, L. Xu, H. Wang, G. Gu, Poisoning network visibility in software-defined
networks: New attacks and countermeasures, in: Proceedings of the Network
and Distributed System Security Symposium, Internet Society, 2015.

[53] B. Agborubere, E. Sanchez-Velazquez, Openflow communications and TLS
security in software-defined networks, in: 2017 IEEE International Conference
on Internet of Things (IThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data, SmartData, IEEE, 2017.

[54] L. Xu, J. Huang, S. Hong, J. Zhang, G. Gu, Attacking the brain: Races in the
SDN control plane, in: Proceedings of the USENIX Security Symposium, USENIX,
2017.

[55] J. Sonchack, A. Dubey, A.J. Aviv, J.M. Smith, E. Keller, Timing-based reconnais-
sance and defense in software-defined networks, in: Proceedings of the Annual
Conference on Computer Security Applications, 2016.

[56] S. Achleitner, T. La Porta, T. Jaeger, P. McDaniel, Adversarial network forensics
in software defined networking, in: Proceedings of the Symposium on SDN
25

Research, ACM, 2017.
[57] V.H. Dixit, A. Doupé, Y. Shoshitaishvili, Z. Zhao, G.-J. Ahn, AIM-SDN: Attacking
information mismanagement in SDN-datastores, in: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, ACM, 2018.

[58] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, P.A. Porras, DELTA: A security
assessment framework for software-defined networks, in: Proceedings of the
Network and Distributed System Security Symposium, Internet Society, 2017.

[59] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, G. Gu, A security en-
forcement kernel for OpenFlow networks, in: Proceedings of the First Workshop
on Hot Topics in Software Fefined Networks, ACM, 2012.

[60] F. Xiao, J. Zhang, J. Huang, G. Gu, D. Wu, P. Liu, Unexpected data dependency
creation and chaining: A new attack to SDN, in: Proceedings of the IEEE
Symposium on Security and Privacy, IEEE, 2020.

[61] S. Jero, X. Bu, C. Nita-Rotaru, H. Okhravi, R. Skowyra, S. Fahmy, BEADS:
Automated attack discovery in OpenFlow-based SDN systems, in: Proceedings of
the International Symposium on Research in Attacks, Intrusions, and Defenses,
Springer, 2017.

[62] B.E. Ujcich, U. Thakore, W.H. Sanders, Attain: An attack injection framework
for software-defined networking, in: Proceedings of the Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, IEEE, 2017.

[63] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, R. Smeliansky, Advanced
study of SDN/OpenFlow controllers, in: Proceedings of the 9th Central & Eastern
European Software Engineering Conference in Russia, 2013.

[64] M. Zhang, G. Li, L. Xu, J. Bi, G. Gu, J. Bai, Control plane reflection attacks in
SDNs: New attacks and countermeasures, in: Proceedings of the International
Symposium on Research in Attacks, Intrusions, and Defenses, Springer, 2018.

[65] M. Yu, J. Rexford, M.J. Freedman, J. Wang, Scalable flow-based networking
with DIFANE, in: Proceedings of the ACM Special Interest Group on Data
Communication, ACM, 2010.

[66] G. Shang, P. Zhe, X. Bin, H. Aiqun, R. Kui, FloodDefender: Protecting data and
control plane resources under SDN-aimed DoS attacks, in: Proceedings of the
IEEE Conference on Computer Communications, IEEE, 2017.

[67] M. Dhawan, R. Poddar, K. Mahajan, V. Mann, SPHINX: Detecting security
attacks in software-defined networks, in: Proceedings of the Network and
Distributed System Security Symposium, Internet Society, 2015.

[68] A.R. Curtis, J.C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S. Baner-
jee, DevoFlow: Scaling flow management for high-performance networks,
in: Proceedings of Conference of the ACM Special Interest Group on Data
Communication, 2011.

[69] R. Skowyra, L. Xu, G. Gu, V. Dedhia, T. Hobson, H. Okhravi, J. Landry, Effective
topology tampering attacks and defenses in software-defined networks, in:
Proceedings of the Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, IEEE, 2018.

[70] S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, D. Bigelow, Identifier
binding attacks and defenses in software-defined networks, in: Proceedings of
the USENIX Security Symposium, USENIX, 2017.

[71] E. Marin, N. Bucciol, M. Conti, An in-depth look into SDN topology discovery
mechanisms: Novel attacks and practical countermeasures, in: Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security, ACM,
2019.

[72] B.E. Ujcich, S. Jero, R. Skowyra, S.R. Gomez, A. Bates, W.H. Sanders, H.
Okhravi, Automated discovery of cross-plane event-based vulnerabilities in
software-defined networking, in: Proceedings of the Network and Distributed
System Security Symposium, Internet Society, 2020.

[73] R. Bifulco, H. Cui, G.O. Karame, F. Klaedtke, Fingerprinting software-defined
networks, in: Proceedings of the International Conference on Network Protocols,
IEEE, 2015.

[74] M. Yu, T. He, P. McDaniel, Q.K. Burke, Flow table security in SDN: Adver-
sarial reconnaissance and intelligent attacks, in: IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, IEEE, 2020, pp. 1519–1528.

[75] S. Liu, M.K. Reiter, V. Sekar, Flow reconnaissance via timing attacks on
SDN switches, in: Proceedings of the International Conference on Distributed
Computing Systems, IEEE, 2017.

[76] J. Cao, Z. Yang, K. Sun, Q. Li, M. Xu, P. Han, Fingerprinting SDN applications
via encrypted control traffic, in: Proceedings of the International Symposium
on Research in Attacks, Intrusions and Defenses, 2019.

[77] M. Seo, J. Kim, E. Marin, M. You, T. Park, S. Lee, S. Shin, J. Kim, Heimdallr:
Fingerprinting SD-WAN control-plane architecture via encrypted control traffic,
in: Annual Computer Security Applications Conference, 2022, pp. 949–963.

[78] J. Cao, Q. Li, R. Xie, K. Sun, G. Gu, M. Xu, Y. Yang, The CrossPath attack:
Disrupting the SDN control channel via shared links, in: Proceedgins of the
Security Symposium, USENIX, 2019.

[79] K. Bu, Y. Yang, Z. Guo, Y. Yang, X. Li, S. Zhang, Flowcloak: Defeating
middlebox-bypass attacks in software-defined networking, in: Proceedings of
the IEEE Conference on Computer Communications, IEEE, 2018.

[80] T.A. Pascoal, I.E. Fonseca, V. Nigam, Slow denial-of-service attacks on software
defined networks, Comput. Netw. 173 (2020) 107223.

[81] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, M. Vechev, SDNRacer: De-
tecting concurrency violations in software-defined networks, in: Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research,

ACM, 2015.

http://refhub.elsevier.com/S1389-1286(24)00035-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb32
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb32
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb32
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb34
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb34
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb34
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb34
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb34
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb35
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb35
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb35
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb35
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb35
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb36
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb36
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb36
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb36
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb36
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb37
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb37
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb37
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb37
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb37
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb38
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb38
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb38
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb39
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb39
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb39
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb39
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb39
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb39
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb39
https://github.com/floodlight/floodlight
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb41
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb41
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb41
https://github.com/opennetworkinglab/onos
https://github.com/opendaylight/
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb46
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb46
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb46
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb46
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb46
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb47
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb47
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb47
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb48
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb48
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb48
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb48
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb48
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb49
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb49
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb49
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb49
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb49
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb50
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb52
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb52
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb52
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb52
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb52
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb53
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb53
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb53
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb53
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb53
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb53
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb53
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb53
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb53
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb54
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb54
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb54
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb54
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb54
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb56
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb56
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb56
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb56
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb56
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb57
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb57
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb57
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb57
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb57
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb58
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb58
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb58
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb58
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb58
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb59
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb59
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb59
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb59
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb59
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb60
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb60
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb60
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb60
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb60
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb61
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb61
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb61
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb61
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb61
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb61
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb61
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb62
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb62
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb62
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb62
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb62
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb63
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb63
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb63
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb63
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb63
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb64
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb64
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb64
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb64
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb64
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb65
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb65
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb65
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb65
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb65
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb66
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb66
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb66
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb66
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb66
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb67
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb67
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb67
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb67
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb67
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb68
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb68
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb68
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb68
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb68
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb68
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb68
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb69
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb69
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb69
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb69
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb69
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb69
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb69
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb70
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb70
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb70
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb70
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb70
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb71
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb71
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb71
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb71
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb71
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb71
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb71
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb72
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb72
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb72
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb72
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb72
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb72
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb72
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb73
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb73
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb73
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb73
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb73
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb74
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb74
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb74
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb74
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb74
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb75
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb75
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb75
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb75
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb75
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb76
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb76
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb76
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb76
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb76
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb77
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb77
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb77
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb77
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb77
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb78
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb78
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb78
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb78
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb78
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb79
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb79
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb79
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb79
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb79
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb80
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb80
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb80
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb81
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb81
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb81
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb81
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb81
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb81
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb81

Computer Networks 241 (2024) 110203J. Kim et al.
[82] A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, M. Vechev, SDNRacer:
Concurrency analysis for software-defined networks, in: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation,
ACM, 2016.

[83] R. May, A. El-Hassany, L. Vanbever, M. Vechev, BigBug: Practical concurrency
analysis for SDN, in: Proceedings of the Symposium on SDN Research, ACM,
2017.

[84] ONOS reactive forwarding application, 2023, https://github.com/
opennetworkinglab/onos/blob/master/apps/fwd/src/main/java/org/
onosproject/fwd/ReactiveForwarding.java.

[85] Unverified commits: Are you unknowingly trusting attackers’ code? 2023,
https://checkmarx.com/blog/unverified-commits-are-you-unknowingly-
trusting-attackers-code/.

[86] R. Durner, W. Kellerer, The cost of security in the SDN control plane, in:
Proceedings of the ACM CoNEXT 2015-Student Workshop, ACM, 2015.

[87] J. Nam, H. Jo, Y. Kim, P. Porras, V. Yegneswaran, S. Shin, Barista: An
event-centric NOS composition framework for software-defined networks, in:
Proceedings of the IEEE Conference on Computer Communications, IEEE, 2018.

[88] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv, M. Schapira,
A. Valadarsky, VeriCon: Towards verifying controller programs in software-
defined networks, in: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2014, pp. 282–293.

[89] M. Canini, D. Venzano, P. Perešíni, D. Kostić, J. Rexford, A NICE way to test
openflow applications, in: Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, USENIX, 2012.

[90] S. Son, S. Shin, V. Yegneswaran, P. Porras, G. Gu, Model checking invariant
security properties in OpenFlow, in: Proceedings of the IEEE International
Conference on Communications, IEEE, 2013.

[91] C. Lee, C. Yoon, S. Shin, S.K. Cha, INDAGO: A new framework for detecting ma-
licious SDN applications, in: Proceedings of the IEEE International Conference
on Network Protocols, IEEE, 2018.

[92] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B.
O’Connor, P. Radoslavov, W. Snow, et al., ONOS: Towards an open, distributed
SDN OS, in: Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, ACM, 2014.

[93] J. Medved, R. Varga, A. Tkacik, K. Gray, Opendaylight: Towards a model-driven
SDN controller architecture, in: Proceeding of IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks 2014, IEEE, 2014, pp.
1–6.

[94] N. Katta, H. Zhang, M. Freedman, J. Rexford, Ravana: Controller fault-tolerance
in software-defined networking, in: Proceedings of the ACM SIGCOMM
Symposium on Software Defined Networking Research, ACM, 2015.

[95] B. Chandrasekaran, B. Tschaen, T. Benson, Isolating and tolerating SDN applica-
tion failures with legosdn, in: Proceedings of the Symposium on SDN Research,
ACM, 2016.

[96] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, D. Kostic, A SOFT way for
openflow switch interoperability testing, in: Proceedings of the International
Conference on Emerging Networking Experiments and Technologies, ACM,
2012.

[97] A. Kamisiński, C. Fung, Flowmon: Detecting malicious switches in software-
defined networks, in: Proceedings of the 2015 Workshop on Automated Decision
Making for Active Cyber Defense, 2015, pp. 39–45.

[98] P.-W. Chi, C.-T. Kuo, J.-W. Guo, C.-L. Lei, How to detect a compromised
SDN switch, in: Proceedings of the 2015 1st IEEE Conference on Network
Softwarization, NetSoft, IEEE, 2015, pp. 1–6.

[99] P.M. Mohan, T. Truong-Huu, M. Gurusamy, Towards resilient in-band control
path routing with malicious switch detection in SDN, in: 2018 10th Interna-
tional Conference on Communication Systems & Networks, COMSNETS, IEEE,
2018, pp. 9–16.

[100] J. Sonchack, J.M. Smith, A.J. Aviv, E. Keller, Enabling practical software-
defined networking security applications with OFX, in: Proceedings of the
Network and Distributed System Security Symposium, vol. 16, 2016.

[101] S.R. Gomez, S. Jero, R. Skowyra, J. Martin, P. Sullivan, D. Bigelow, Z.
Ellenbogen, B.C. Ward, H. Okhravi, J.W. Landry, Controller-oblivious dynamic
access control in software-defined networks, in: Proceedings of the Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, IEEE,
2019.

[102] A. Khurshid, X. Zou, W. Zhou, M. Caesar, P.B. Godfrey, VeriFlow: Verifying
network-wide invariants in real time, in: Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation, USENIX, 2013.

[103] C. Röpke, T. Holz, Preventing malicious SDN applications from hiding adverse
network manipulations, in: Proceedings of the 2018 Workshop on Security in
Softwarized Networks: Prospects and Challenges, 2018.

[104] A. Wundsam, D. Levin, S. Seetharaman, A. Feldmann, OFRewind: Enabling
record and replay troubleshooting for networks, in: Proceedings of the USENIX
Annual Technical Conference, USENIX, 2011.

[105] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang, Z.
Liu, A. El-Hassany, S. Whitlock, et al., Troubleshooting blackbox SDN control
software with minimal causal sequences, in: Proceedings of the ACM Special
Interest Group on Data Communication, ACM, 2014.
26
[106] B.E. Ujcich, S. Jero, R. Skowyra, A. Bates, W.H. Sanders, H. Okhravi,
Causal analysis for software-defined networking attacks, in: USENIX Security
Symposium, 2021, pp. 3183–3200.

[107] A. Dwaraki, S. Seetharaman, S. Natarajan, T. Wolf, GitFlow: Flow revision
management for software-defined networks, in: Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, 2015, pp.
1–6.

[108] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L.P. Cox, J. Jung,
P. McDaniel, A.N. Sheth, TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones, ACM Trans. Comput. Syst. (2014).

[109] V.B. Livshits, M.S. Lam, Finding security vulnerabilities in Java applications
with static analysis, in: Proceedings of the USENIX Security Symposium,
USENIX, 2005.

[110] Security-mode ONOS, 2023, https://wiki.onosproject.org/display/ONOS/
Security-Mode+ONOS.

[111] CORD: Central office re-architected as a datacenter, 2023, https:
//opennetworking.org/cord/.

[112] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, M. Conti, A survey on the
security of stateful SDN data planes, IEEE Commun. Surv. Tutor. 19 (3) (2017)
1701–1725.

[113] K. Lei, G. Lin, M. Zhang, K. Li, Q. Li, X. Jing, P. Wang, Measuring the
consistency between data and control plane in SDN, IEEE/ACM Trans. Netw.
31 (2) (2022) 511–525.

[114] ORAN alliance, 2023, https://www.o-ran.org/.
[115] O. Alliance, O-RAN near-real-time RAN intelligent controller, E2 application

protocol (E2AP) 2. 02, 2022.
[116] O. Alliance, O-RAN near-real-time RAN intelligent controller E2 service model

(E2SM), ran function network interface (ni) 1.0, 2020, Technical Specification.
[117] Atomix:A reactive Java framework for building fault-tolerant distributed

systems, 2023, https://atomix.io.
[118] Next generation architecture of ONOS, 2019, https://docs.onosproject.org/.
[119] S.T. Arzo, D. Scotece, R. Bassoli, D. Barattini, F. Granelli, L. Foschini,

F.H. Fitzek, MSN: A playground framework for design and evaluation of
microservices-based SDN controller, J. Netw. Syst. Manage. 30 (2022) 1–31.

[120] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C.
Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., P4: Programming
protocol-independent packet processors, ACM SIGCOMM Comput. Commun.
Rev. (2014).

[121] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger, R.
Frank, M. Menth, A survey on data plane programming with P4: Fundamentals,
advances, and applied research, J. Netw. Comput. Appl. 212 (2023) 103561.

[122] K. Birnfeld, D.C. da Silva, W. Cordeiro, B.B.N. de França, P4 switch code data
flow analysis: Towards stronger verification of forwarding plane software, in:
NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium,
IEEE, 2020, pp. 1–8.

[123] Q. Huang, P.P. Lee, Y. Bao, Sketchlearn: Relieving user burdens in approximate
measurement with automated statistical inference, in: Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, 2018,
pp. 576–590.

[124] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, V. Braverman, One sketch to rule
them all: Rethinking network flow monitoring with univmon, in: Proceedings
of the 2016 ACM SIGCOMM Conference, 2016, pp. 101–114.

Jinwoo Kim is an assistant professor in the School of
Software at Kwangwoon University, Seoul, South Korea. He
received his Ph.D. degree in School of Electrical Engineering
and his M.S degree in Graduate School of Information
Security from KAIST, and his B.S degree from Chungnam
National University in Computer Science and Engineering.
His research topic focuses on investigating security issues
with software defined networks and cloud systems.

Minjae Seo is a researcher at ETRI, Daejeon, South Korea.
He received his M.S. degree from the Graduate School of In-
formation Security at KAIST and his B.S. degree in Computer
Engineering from Mississippi State University. His cur-
rent research interests include Software-defined networking
security, network fingerprinting, and deep learning-based
network systems.

http://refhub.elsevier.com/S1389-1286(24)00035-5/sb82
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb82
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb82
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb82
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb82
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb82
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb82
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb83
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb83
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb83
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb83
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb83
https://github.com/opennetworkinglab/onos/blob/master/apps/fwd/src/main/java/org/onosproject/fwd/ReactiveForwarding.java
https://github.com/opennetworkinglab/onos/blob/master/apps/fwd/src/main/java/org/onosproject/fwd/ReactiveForwarding.java
https://github.com/opennetworkinglab/onos/blob/master/apps/fwd/src/main/java/org/onosproject/fwd/ReactiveForwarding.java
https://github.com/opennetworkinglab/onos/blob/master/apps/fwd/src/main/java/org/onosproject/fwd/ReactiveForwarding.java
https://github.com/opennetworkinglab/onos/blob/master/apps/fwd/src/main/java/org/onosproject/fwd/ReactiveForwarding.java
https://checkmarx.com/blog/unverified-commits-are-you-unknowingly-trusting-attackers-code/
https://checkmarx.com/blog/unverified-commits-are-you-unknowingly-trusting-attackers-code/
https://checkmarx.com/blog/unverified-commits-are-you-unknowingly-trusting-attackers-code/
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb86
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb86
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb86
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb87
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb87
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb87
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb87
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb87
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb88
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb88
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb88
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb88
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb88
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb88
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb88
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb89
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb89
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb89
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb89
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb89
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb90
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb90
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb90
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb90
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb90
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb91
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb91
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb91
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb91
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb91
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb92
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb92
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb92
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb92
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb92
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb92
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb92
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb93
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb93
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb93
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb93
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb93
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb93
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb93
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb94
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb94
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb94
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb94
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb94
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb95
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb95
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb95
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb95
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb95
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb96
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb96
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb96
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb96
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb96
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb96
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb96
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb97
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb97
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb97
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb97
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb97
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb98
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb98
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb98
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb98
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb98
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb99
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb99
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb99
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb99
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb99
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb99
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb99
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb100
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb100
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb100
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb100
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb100
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb101
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb101
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb101
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb101
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb101
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb101
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb101
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb101
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb101
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb102
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb102
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb102
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb102
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb102
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb103
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb103
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb103
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb103
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb103
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb104
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb104
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb104
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb104
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb104
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb105
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb105
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb105
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb105
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb105
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb105
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb105
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb106
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb106
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb106
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb106
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb106
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb107
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb107
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb107
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb107
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb107
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb107
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb107
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb108
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb108
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb108
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb108
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb108
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb109
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb109
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb109
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb109
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb109
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
https://opennetworking.org/cord/
https://opennetworking.org/cord/
https://opennetworking.org/cord/
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb112
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb112
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb112
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb112
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb112
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb113
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb113
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb113
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb113
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb113
https://www.o-ran.org/
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb115
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb115
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb115
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb116
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb116
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb116
https://atomix.io
https://docs.onosproject.org/
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb119
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb119
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb119
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb119
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb119
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb120
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb120
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb120
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb120
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb120
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb120
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb120
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb121
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb121
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb121
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb121
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb121
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb122
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb122
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb122
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb122
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb122
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb122
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb122
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb123
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb123
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb123
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb123
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb123
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb123
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb123
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb124
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb124
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb124
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb124
http://refhub.elsevier.com/S1389-1286(24)00035-5/sb124

Computer Networks 241 (2024) 110203J. Kim et al.
Seungsoo Lee is an assistant professor in the Department
of Computer Science and Engineering at Incheon National
University, Incheon, South Korea. He received his B.S.
degree in Computer Science from Soongsil University in
Korea. He received his Ph.D. degree and M.S. degree both
in Information Security from KAIST. His research interests
focus on cloud computing and network systems security.
He is especially focusing his attention on software-defined
networking (SDN), network function virtualization (NFV),
containers, and its security issues.

Jaehyun Nam is an assistant professor at Department of
Computer Engineering, Dankook University, South Korea.
He received his Ph.D. and M.S. degree in School of Comput-
ing (Information Security) from KAIST and his B.S. degree in
Computer Science and Engineering from Sogang University
in Korea. His research interests focus on networked systems
and security. He is especially interested in performance
and security issues in cloud and edge computing systems,
including SDN/NFV, IoT, containers.

Vinod Yegneswaran received his A.B. degree from the
University of California, Berkeley, CA, USA, in 2000, and
his Ph.D. degree from the University of Wisconsin, Madison,
WI, USA, in 2006, both in Computer Science. He is a
Senior Computer Scientist with SRI International, Menlo
Park, CA, USA, pursuing advanced research in network and
systems security. His current research interests include SDN
security, malware analysis and anti-censorship technologies.
Dr. Yegneswaran has served on several NSF panels and pro-
gram committees of security and networking conferences,
including the IEEE Security and Privacy Symposium.
27
Phillip Porras received his M.S. degree in Computer Science
from the University of California, Santa Barbara, CA, USA,
in 1992. He is an SRI Fellow and a Program Director
of the Internet Security Group in SRI’s Computer Science
Laboratory, Menlo Park, CA, USA. He has participated
on numerous program committees and editorial boards,
and participates on multiple commercial company technical
advisory boards. He continues to publish and conduct tech-
nology development on numerous topics including intrusion
detection and alarm correlation, privacy, malware analytics,
active and software defined networks, and wireless security.

Guofei Gu received the Ph.D. degree in computer science
from the College of Computing, Georgia Tech, in 2008. He is
an currently an Associate Professor with the Department of
Computer Science and Engineering, Texas A&M University
(TAMU). He is currently Directing the SUCCESS (Secure
Communication and Computer Systems) Lab, TAMU. He
was a recipient of the 2010 NSF CAREER Award, the
2013 AFOSR Young Investigator Award, the Best Student
Paper Award from 2010 IEEE Symposium on Security and
Privacy (Oakland ’10), the Best Paper Award from 2015
International Conference on Distributed Computing Systems
(ICDCS ’15), and the Google Faculty Research Award.

Seungwon Shin is an associate professor in the School
of Electrical Engineering at KAIST. He received his Ph.D.
degree in Computer Engineering from the Electrical and
Computer Engineering Department, Texas A&M University,
and his M.S. degree and B.S. degree from KAIST, both in
Electrical and Computer Engineering. He is currently a vice
president at Samsung Electronics, leading the security team
in the IT & Mobile Communications Division. His research
interests span the areas of Software-defined networking
security, IoT security, Botnet analysis/detection, DarkWeb
analysis and cyber threat intelligence.

	Enhancing security in SDN: Systematizing attacks and defenses from a penetration perspective
	Introduction
	Background
	What is Software-Defined Networking (SDN)?
	SDN Controller and Application
	OpenFlow and SDN Switch
	Trust and Threat Model in SDN

	Related Work
	Systematization Taxonomy
	Penetration Route
	Application
	Northbound Interface (NBI)
	Controller
	Southbound Interface (SBI)
	Switch
	Switch Interface
	Host

	Attack Type
	Denial of Service (DoS)
	Information Leakage
	Protocol Abusing
	Man-in-the-Middle
	Policy Evasion
	Storage Poisoning

	Defense Type
	Authentication
	Access Control
	Patch/Extension
	Testing
	Program Analysis
	Monitoring

	Root Cause
	Lack of NBI Authorization
	Lack of SBI Authorization
	Lack of Control Event Integrity
	Lack of Control Message Integrity
	Lack of Application Authentication
	Lack of Switch and Host Authentication
	Lack of Controller Resource Control
	Side Channel
	Implementation Flaw

	SDN Attack Classification
	Application to Controller
	Denial of Service
	Storage Poisoning
	Man-in-the-Middle
	Policy Evasion

	Application to Switch
	Denial of Service
	Protocol Abusing

	Switch to Controller
	Protocol Abusing

	Host to Controller
	Denial of Service
	Storage Poisoning
	Policy Evasion

	Host to Switch
	Information Leakage
	Main-in-the-Middle
	Denial of Service

	SDN Defense Classification
	Application Layer
	Authentication
	Access Control
	Monitoring
	Program Analysis

	Control Layer
	Testing
	Patch/Extension

	Infrastructure Layer
	Testing
	Monitoring
	Patch/Extension

	Cross Layer
	Monitoring
	Program Analysis

	Use Cases
	Utilizing Penetration Routes for Proactive Defenses
	Predicting Unexplored Penetration Routes
	Identifying Vulnerable Layers and Components
	Correlating Penetration Routes with Shadow CVEs
	Real-world Case Studies
	Case Study 1 – Buffered Packet Hijacking
	Case Study 2 – Cross-plane Attack
	Case Study 3 – Flow Table Overloading
	Implication

	Future Research Directions
	Application Layer
	Designing Fingerprinting-resistant SDN
	Solving Policy Inconsistencies in Large-scale SDN

	Control Layer
	Implementing Zero Trust Paradigm in SDN
	Finding Vulnerabilities in O-RAN Architecture
	Finding Vulnerabilities in Distributed Controllers
	Microservices and SDN Security

	Infrastructure Layer
	Verifying Implementation Inconsistency in SDN Switches
	Finding Vulnerabilities in Programmable Switches

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

