
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021 623

Control Plane Reflection Attacks and Defenses
in Software-Defined Networks

Menghao Zhang , Graduate Student Member, IEEE, Guanyu Li , Lei Xu, Jiasong Bai,

Mingwei Xu , Senior Member, IEEE, Guofei Gu, Fellow, IEEE, and Jianping Wu, Fellow, IEEE

Abstract— Software-Defined Networking (SDN) continues to be
deployed spanning from enterprise data centers to cloud com-
puting with the proliferation of various SDN-enabled hardware
switches and dynamic control plane applications. However, state-
of-the-art SDN-enabled hardware switches have rather limited
downlink message processing capability, especially for Flow-Mod
and Statistic Query, which may not suffice the huge need of
dynamic control plane applications. In this paper, we systemati-
cally study the interactions between the control plane applications
and the data plane switches, and present two new attacks,
namely Control Plane Reflection Attacks, to exploit the limited
processing capability of SDN-enabled hardware switches. The
reflection attacks adopt direct and indirect data plane events to
force the control plane to issue massive expensive downlink mes-
sages towards SDN switches. Moreover, we propose a two-phase
probing-triggering attack strategy, which makes the reflection
attacks much more efficient and powerful. Experiments on a
testbed with 3 different physical OpenFlow switches demonstrate
that the attacks can lead to catastrophic results such as hurting
the establishment of new flows and even disruption of connection
between SDN controller and switches. To mitigate such attacks,
we present several countermeasures from different perspectives.
In particular, we propose a novel, systematical defense frame-
work, SwitchGuard, to detect anomalies of downlink messages
and prioritize these messages based on a novel monitoring
granularity, i.e., host-application pair (HAP). Implementations
and evaluations demonstrate that SwitchGuard can effectively
reduce the latency for legitimate hosts and applications under
the control plane reflection attacks with only minor overheads.

Index Terms— Software-Defined Networking (SDN), side-
channel attacks, denial-of-service attacks.

I. INTRODUCTION

SOFTWARE-DEFINED Networking (SDN) has enabled
flexible and dynamic network functionalities with a novel

Manuscript received May 19, 2020; revised October 9, 2020 and
November 19, 2020; accepted November 23, 2020; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor W. Lou. Date of publication
December 9, 2020; date of current version April 16, 2021. This work
was supported in part by the National Key Research and Development
Program of China under Grant 2017YFB0801701 and in part by the National
Science Foundation of China under Grant 61872426, Grant 61625203, and
Grant 61832013. This article was presented at the Conference of RAID 2018.
(Corresponding author: Mingwei Xu.)

Menghao Zhang, Guanyu Li, Jiasong Bai, Mingwei Xu, and Jianping Wu are
with the Institute for Network Sciences and Cyberspace, Tsinghua University,
Beijing 100084, China, also with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China, and also with the
Beijing National Research Center for Information Science and Technology
(BNRist), Beijing 100084, China (e-mail: zhangmh16@mails.tsinghua.edu.cn;
ligy18@mails.tsinghua.edu.cn; bjs17@mails.tsinghua.edu.cn; xumw@
tsinghua.edu.cn; jianping@cernet.edu.cn).

Lei Xu and Guofei Gu are with the Department of Computer Science and
Engineering, Texas A&M University, College Station, TX 77843 USA (e-mail:
xray2012@email.tamu.edu; guofei@cse.tamu.edu).

Digital Object Identifier 10.1109/TNET.2020.3040773

programming paradigm. By separating the control plane from
the data plane, control logics of different network function-
alities are implemented on top of the logically centralized
controller as applications. Typical SDN applications are imple-
mented as event-driven programs which receive information
directly or indirectly from the switches and distribute the
packet processing decisions to switches accordingly. These
applications enable SDN to adapt to the data plane dynamics
quickly and make responses to the application policies timely.
A wide range of network functionalities are implemented
in this way, allowing SDN-enabled switches to behave as
firewall [2], load balancing [3]–[6], network address transla-
tion [5], L2/L3 routing and so on. These new features and
benefits have driven SDN paradigm to be deployed spanning
from enterprise data centers to cloud computing and virtual-
ized environments, among others [7].

Besides the substantial benefits and wide deployments, SDN
has also encountered several problems. While the applica-
tions in the mainstream SDN controllers are emerging con-
stantly [2]–[6], the development and evolution of current
SDN-enabled hardware switches is much slower [8]–[19].
In particular, the control message processing capability of
SDN-enabled hardware switches is rather limited, constrained
by multiple factors. First, CPUs of hardware switches are
usually relatively poor for financial reasons [8], [9], which
restricts the message parsing and processing capability of
software protocol agents in switches. Second and more impor-
tantly, flow tables in most commodity hardware switches use
Ternary Content Addressable Memory (TCAM) to achieve
wire-speed packet processing, which only allows limited flow
table update rate (only support 100-200 flow rule updates
per second [9]–[17]) and small flow table space (ranging from
hundreds to a few thousands [8], [10], [18]). These limitations
have slowed down network updates and hurt network visibility,
which further constrains the control plane applications with
dynamic policies significantly [12].

In this paper, we systematically study the interactions
between the control plane applications and the data plane
switches, and identify two types of data plane events
which could reflect expensive control messages towards the
data plane, i.e., direct data plane events (e.g., Packet-In
messages) and indirect data plane events (e.g., Statistics
Query/Reply messages). By manipulating those data plane
events, we present two Control Plane Reflection Attacks in
the SDN-based network, i.e., Table-miss Striking Attack and
Counter Manipulation Attack, which can effectively exploit the
limited control message processing capability of SDN-enabled
hardware switches. To further improve the accuracy and
efficiency of Control Plane Reflection Attacks, we present a
two-phase attack strategy, which consists of a probing phase
and a triggering phase. With this strategy, Control Plane

1558-2566 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5274-5512
https://orcid.org/0000-0002-7939-7367
https://orcid.org/0000-0002-4847-4585


624 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Reflection Attacks can be launched in a rather efficient and
powerful manner, which can succeed even in the presence
of state-of-the-art SDN detection and defense frameworks,
such as DELTA [20] and SPHINX [21]. With Control Plane
Reflection Attacks, attackers can deliberately induce a large
number of control messages towards switches, which can lead
to catastrophic results such as hurting the establishment of
new flows and even disruption of connection between SDN
controller and switches. Extensive experiments on a physical
testbed with 3 types of hardware switches demonstrate that
these attack vectors are highly effective and the attack effects
are rather catastrophic.

In order to mitigate Control Plane Reflection Attacks,
we present several countermeasures from different perspec-
tives. Further, we propose a novel and systematical defense
framework, namely SwitchGuard. SwitchGuard leverages a
new monitoring granularity—host-application pair (HAP)—to
detect downlink message1 anomalies, and prioritizes downlink
messages when the downlink channel congests. In this way,
SwitchGuard is able to satisfy the latency requirements of
different hosts and applications under the reflection attacks.

To summarize, our main contributions include:
• We systematically study the interactions between the

control plane and the data plane switches, and locate
two types of data plane events, i.e., direct/indirect events,
both could be manipulated to reflect expensive control
messages towards SDN switches.

• We present two Control Plane Reflection Attacks,
Table-miss Striking Attack and Counter Manipulation
Attack, to exploit limited control message processing
capability of SDN-enabled hardware switches by using
direct/indirect data plane events. Moreover, we develop
a two-phase attack strategy to launch such attacks in an
efficient and powerful way. The experiments on a physical
SDN testbed exhibit their harmful effects.

• We present several defense solutions to mitigate such
attacks. Especially, a systematical defense solution,
SwitchGuard, is proposed to make use of an efficient pri-
ority assignment and scheduling algorithm based on the
novel abstraction of host-application pair (HAP). Imple-
mentations and evaluations demonstrate that SwitchGuard
provides effective protection for legitimate hosts and
applications with only minor overheads.

The remainder of this paper is structured as follows.
Section II introduces the background, observations, and moti-
vations of these attacks. Section III illustrates the technical
details of Control Plane Reflection Attacks and Section IV
proves their harmful effects on a physical testbed. Section V
presents several countermeasures to mitigate these attacks and
Section VI introduces our systematical defense framework,
SwitchGuard. We make some discussions in Section VII, illus-
trate the related works in Section VIII, and finally conclude
our paper in Section IX.

II. BACKGROUND AND MOTIVATION

In this section, we illustrate the background of the packet
processing logics in SDN and further motivate our attacks.

Processing logic of data plane events. SDN introduces
the open network programming interface and accelerates the

1In this paper, for brevity, we denote the messages from the data plane to
the control plane as uplink messages, and the messages from the control plane
to data plane as downlink messages.

Fig. 1. Summary of current SDN architecture and its exposure to Control
Plane Reflection Attacks.

proliferation of network applications, which enable network
to dynamically adjust network configurations based on certain
data plane events, as illustrated in Fig. 1. These events could
be categorized into the following two types: direct data plane
events such as Packet-In messages, where the event variations
are reported to the controller from data plane directly, and
indirect data plane events such as Statistics Query/Reply
messages, where the event variations are obtained through a
query and reply procedure for the controller. In the first case,
the controller installs a default table-miss flow rule on the
switch. When a packet arrives at the switch and its packet
header does not match any other flow rule, the switch will
forward this packet to the control plane for further processing.
Then the controller makes decisions for the packet based on
the logics of the applications, and assigns new flow rules to the
switch to handle subsequent packets of the same match fields.
In the second case, the controller first installs a counting flow
rule reactively or proactively on the switch for a measurement
purpose. When a packet matches the counting flow rule in the
flow table, the corresponding counter increments with packet
number and packet bytes. To obtain the status of the data
plane, the controller polls the flow counter values for statistics
periodically and performs different operations according to
the analysis of statistics. A large number of control plane
applications combine these two kinds of data plane events
to compose complicated network functions, which further
achieve advanced packet processing.

Usage study of data plane events. Based on the
event-driven programming paradigm, a large number of con-
trol plane applications proliferate in both academia and indus-
try. In academia, since the advent of OpenFlow [30], a popular
standard protocol between controllers and switches, many
research applications have been proposed to fully leverage
the benefits of direct and indirect data plane events. While
direct data plane events are desired by almost all applications,
indirect data plane events are also widely included. Especially,
Table I shows a summarization of these indirect event-driven
applications, categorized by three types, applications which
help improve optimization, monitoring and security of net-
work. As we can see, although each of them has different
purposes, all of these works are deeply involved in the utiliza-
tion of indirect data plane events, obtaining a large number of
traffic features and switch attributes. Moreover, these indirect
data plane events contribute a large part of communication
between applications and switches. In industry, SDN appli-
cations have also experienced rapid development recently.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: CONTROL PLANE REFLECTION ATTACKS AND DEFENSES IN SOFTWARE-DEFINED NETWORKS 625

TABLE I

EXAMPLES OF INDIRECT EVENT DRIVEN APPLICATIONS IN ACADEMIA

TABLE II

EXAMPLES OF INDIRECT/DIRECT EVENT DRIVEN APPLICATIONS IN INDUSTRY

The mainstream SDN platforms (e.g. Open Daylight [31],
ONOS [32], Floodlight [33]) foster open and prosperous mar-
kets for control plane software, which provide a great range
of applications with a composition of direct and indirect data
plane events. Besides, since these applications are obtained
from a great variety of sources, their quality could not be
guaranteed and their logics may contain various flaws or
vulnerabilities. In particular, we have investigated all main-
stream SDN controllers, as depicted in Table II, and discovered
that indirect event-driven applications occupy a large part of
application markets in these open source controller platforms.

Limitations of SDN-enabled hardware switches. Com-
pared with the rapid growth in packet processing capability in
logically centralized and physically distributed network oper-
ating systems (e.g., Onix [34], Hyperflow [35], Kandoo [36])
and controller frameworks (e.g., Open Daylight, ONOS),
the downlink message processing capability of SDN-enabled
hardware switches evolves much slower. State-of-the-art
SDN-enabled hardware switches only support thousands of
flow entries [19]. To make matters worse, the capability to
update the entries in TCAM is rather limited, usually less
than 200 updates per second [9]–[17], [19]. According to
our experiment on Pica8 P-3922, the maximum update rate
is about 150 entries per second. Similar results of update
rate are reported in a previous paper [15] for other switch
brands, i.e., Broadcom, Intel, and IBM. To find out the root
cause behind this phenomenon, we have conducted several
conversations with different switch vendors. Even nowadays,
OpenFlow support is oftentimes provided as an experimental
feature in the switches, and most vendors simply adapt con-
ventional switches to support OpenFlow. In traditional switch
operation, the control channel between the ASIC and the CPU
is not frequently used, so the CPU is relatively poor and
the ASIC API is not so optimized. When these conventional
switches are adapted to be OpenFlow-enabled, the weak CPU
and unoptimized ASIC API become a prominent bottleneck.
This is also a potential side channel attack surface, since
these bottleneck resources are shared among all the con-
trol messages and are used differently with diverse message
types. By observing these shared resources, how the resources
are used would be visible to the attackers. In conclusion,
the downlink channel in the switches is the dominant resource

in the SDN architecture that must be carefully managed to
fully leverage the benefits of the SDN applications. However,
existing SDN architecture does not provide such a mechanism
to protect the downlink channel in the switches that it is
vulnerable to potential side channel attacks.

III. CONTROL PLANE REFLECTION ATTACKS

In this section, we first introduce our threat model and
then describe the details of two Control Plane Reflection
Attacks including Table-miss Striking Attack and Counter
Manipulation Attack.

A. Threat Model

We assume an adversary possesses one or more hosts
or virtual machines (e.g., via malware infection) in the
SDN-based network. The adversary can use his/her controlled
hosts or virtual machines to initiate probe packets, monitor
their responses, and generate attack traffic. Note that we do not
assume the hosts that are probed by attackers are malicious,
as these hosts only need to reply to the incoming packets
based on the protocol stack. We also do not assume the
adversary can compromise SDN controllers, applications or
switches. In addition, we assume the connection between SDN
controllers and switches is well protected by TLS/SSL.

B. Control Plane Reflection Attacks

Control Plane Reflection Attacks are much more sophis-
ticated than previous straightforward DoS attacks against
SDN infrastructure, and generally consist of two phases,
i.e., probing phase and triggering phase. During the probing
phase, the attacker uses timing probing packets, test packets
and data plane stream to learn the configurations of control
plane applications and their involvements in direct/indirect
data plane events. With several trials, the attacker is able to
determine the conditions that control plane application adopts
to issue new flow rule update messages. Upon the information
obtained from probing phase, the attacker can carefully craft
the patterns of attack packet stream (e.g. packet header space,
packet interval) to deliberately trigger the control plane to
issue numerous flow rule update messages in a short interval

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



626 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

to paralyze the hardware switches. We detail two vectors of
Control Plane Reflection Attacks as follows.

1) Table-miss Striking Attack : Table-miss Striking Attack
is an enhanced attack vector from previous data-to-control
plane saturation attack [27], [37]–[39]. Instead of lever-
aging a random packet generation method to conduct the
attack, Table-miss Striking Attack adopts a more accurate
and cost-efficient manner by utilizing probing and triggering
phases.

The probing phase aims to learn the confidential information
of the SDN control plane to guide the patterns of attack
packet stream. The attacker could first probe the use of direct
data plane events (e.g., Packet-In, Packet-Out, Flow-Mod) by
using various low-rate probing packets whose packet header
is filled with deliberately faked values. The attacker sends
these probing packets to the SDN-based network and observes
the corresponding responses, thus obtaining the round trip
time (RTT) for each probing packet accordingly. If several
packets with the same packet header get different RTT values,
especially, the first packet goes through a long delay while the
other packets get relatively quick responses, we can conclude
that the first packet is directed to the controller and the other
packets are forwarded directly in the data plane. This also
indicates that the specific packet header matches no flow rules
in the switch and invokes Packet-In and Flow-Mod messages.
Then the attacker changes one of the header fields with the
variable-controlling approach. With no more than 42 trials,2

the attacker is able to determine which header fields are
sensitive to the controller, i.e., the granularity for routing. Then
the attacker could deliberately craft attack stream based on the
probed granularity to deliberately trigger the expensive flow
rule update operations.

2) Counter Manipulation Attack : Compared with
Table-miss Striking Attack, Counter Manipulation Attack
is much more sophisticated, which is based on indirect
data plane events (e.g., Statistics Query/Reply messages).
In order to accurately infer the usage of the indirect data
plane events, three types of packets are required, i.e., timing
probing packets, test packets and data plane stream. The
timing probing packets are inspired by the time pings in [13],
which must involve the switch software agent and get the
responses accordingly. However, we believe that they have a
wider range of choices. The test packets are a sequence of
packets which should put extra loads on the software agent
of the switch, and must be issued at an appropriate rate for
the accuracy of probing. The data plane stream is a series
of stream templates, and should directly go through the data
plane (i.e., do not trigger table-miss entry in the flow table
of the switch), which is intended to obtain more advanced
information such as the specific conditions which trigger
indirect event-driven applications.

Timing probing packets are used to measure the workload
of the software agent of a switch, which should satisfy the
following three key properties. First, they should go to the
control plane by hitting the table-miss flow rule in the switch,
and trigger the operations of the flow rule update (e.g. Flow-
Mod or Packet-Out). Second, each of them must evoke a
response from the SDN-based network, so the attacker could
compute the RTT for each timing probing. Third, they should

2The latest OpenFlow specification only support 42 header fields, which
constrains the field the controller could use to compose different forwarding
policies.

be sent in an extremely low rate (10 pps is enough), and
put as low loads as possible on the switch software agent.
We consider many options here for timing probing packets,
e.g., ARP request/reply, ICMP request/reply, TCP SYN or
UDP. For layer 2, ARP request is an ideal choice, since
the SDN control plane must be involved in the processing
of ARP request/reply. We note that sometimes the broadcast
ARP request will be processed in the switches. However,
the corresponding ARP reply is a unicast packet so that the
control plane involvement is inevitable if the destination MAC
(i.e., the source MAC address of the ARP Request) has not
been dealt by the controller before. As a result, the attacker
could use spoofed source MAC address to deliberately pollute
the device management service of the controller as well
as incur the involvement of the controller. In some layer
2 networks, it is impossible to send packets with random
source MAC addresses due to pre-authorized network access
control policies. To solve this challenge, the attacker could
resort to the flow rule time-out mechanism of OpenFlow.
The attacker would select N benign hosts and send ARP
request to them to get the responses. N should satisfy that
N > R ∗ T , where R denotes the probing rate and T
denotes the flow-rule time-out value.3 For layer 3, ICMP is
a straightforward choice, since its RTT calculation has been
abstracted as ping command already. The attacker should
choose a number of benign hosts to send ICMP packets and get
the corresponding responses. As for layer 4, TCP and UDP are
both feasible when a layer 4 forwarding policy is configured in
the control plane. According to RFC 792 [40], when a source
host transmits a probing packet to a port which is likely closed
at the destination host, the destination is supposed to reply
an ICMP port unreachable message to the source. Similarly,
RFC 793 [41] requires that each TCP SYN packet should be
responded with a TCP SYN/ACK packet (opened port) or TCP
RST packet (closed port) accordingly. With the probing packet
returned with the corresponding response, the RTT could be
calculated and the time-based patterns could be obtained.

Test packets are used to strengthen the effect of timing
probing packets by adding extra loads to the software agent
of the switch. Note that the extra loads should be appropriate
to reach the nonlinear jump point of the hardware switch
(§ IV-C.1). For the purpose, we consider test packets with
a random destination IP address and broadcast destination
MAC address as an ideal choice. By hitting the table-miss
entry, each of them would be directed to the controller. Then
the SDN controller will issue Packet-Out message to directly
forward the test packet. As a result, the aim of burdening
switch software agent is achieved.

Data plane stream is a series of templates, which should go
directly through the data plane to obtain more advanced infor-
mation such as the specific conditions for indirect event-driven
applications. We provide two templates here, as shown
in Fig. 2. The first template has a steady rate v, packet size p.
The second has a rate distribution like a jump function, where
three variables (v, t, p) determine the shapes of this template
as well as the size of each packet. These two templates can be
set with different parameters to compose complicated probing
schemes to infer different control strategies.

The insight of probing phase of Counter Manipulation
Attack lies in that different kinds of downlink messages

3As R is less than 10 usually, and T is set as a small value in most
controllers (e.g. 5 in Floodlight), thus N cannot be a large number.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: CONTROL PLANE REFLECTION ATTACKS AND DEFENSES IN SOFTWARE-DEFINED NETWORKS 627

Fig. 2. Templates for data plane stream.

have diverse expenses for the downlink channel. Among the
interaction approaches between the applications and the data
plane, there are mainly three types of downlink messages,
i.e., Flow-Mod, Statistics Query and Packet-Out. Flow-Mod
is the most expensive one among them, since it not only
consumes the CPU of switch agent to parse the message,
but also involves the ASIC API to insert the new flow
rules.4 Statistics Query comes at the second, which needs the
involvement of both switch agent CPU for packet parsing and
ASIC API for statistic querying. These two types of messages
are extremely expensive when the occupation of flow table
is high on the switch. Packet-Out is rather lightweight, since
it only involves the switch protocol agent CPU to perform
the corresponding action encapsulated in the packet. As these
three types of downlink messages incur different loads for
the switch, the latencies of timing probing packets will vary
when the switch encounters different message types. Thus,
the attacker could learn whether the control plane issue a Flow-
Mod, or a Statistics Query, or a Packet-Out by observing the
probing latencies. Usually, the statistic queries are conducted
periodically by the applications. As a result, each of these
queries would incur a small rise for the RTTs of timing
probing packets, which would reveal the period of applica-
tion’s statistic query. If a subsequent Flow-Mod is issued
by the controller, there would be a higher rise of RTT just
following the RTT for Statistics Query, which is named as
double-peak phenomenon under this context. Based on this
phenomenon, the attacker could further infer what statistic cal-
culation methods the application takes, such as volume-based
or rate-based. We summarize this procedure in Algorithm 1,
and give several concrete examples in Section IV. With several
trials of two data plane stream templates above (lines 10-15,
t is set as the period of statistic messages, which has been
obtained above) and the variations of v and p in a binary search
approach (line 9), based on the occurrence of double-peak
phenomenon, the attacker could quickly obtain the concrete
conditions (volume/rate values, number-based or byte-based)
that trigger the expensive downlink messages (lines 16-31).
The confidential information such as statistic query period,
the exact conditions (volume/rate values, packet number-based
or byte-based) that trigger the downlink messages, helps the
attacker deliberately permute the packet interval and packet
size of each flow and further manipulate the counter value
to the critical value. As a result, each flow would trigger a
Flow-Mod in every period. By initiating a large number of
flows, Flow-Mod of equal number would be triggered every
period, making the hardware switch suffer extremely. All the
concrete inference procedures and attack steps can be seen in
Section IV.

4Moving old flow entry to make room for the new flow rule is an important
reason to make this operation expensive and time-consuming.

Algorithm 1 The Probing Algorithm for Probing Phase
Data: Generator - Packet streams generator, Next - Function giving

next value choice for v
and p

Input: T - configure Generator to generate T seconds of packets per
stream, vprobe - the sending rate of timing probing packets,
vtest - the sending rate of test packets

Output: query policy of applications
// Initialization

1 Generator.init(T );
2 vcur = v0, pcur = p0;
3 streamprobe = Generator.probe(vprobe);
4 streamtest = Generator.test(vtest);
5 streamdp = Generator.dp(template1, v0, p0, T );
// stream∗ demotes the three stream above

6 result = send_parallel(stream∗);
7 tquery = result.t;
8 while true do

// increase represents increasing v and p
simultaneously

9 (vcur , pcur) = Next(vcur , pcur, increase);
10 foreach templatei ∈ [template1, template2] do
11 streamprobe = Generator.probe(vprobe);
12 streamtest = Generator.test(vtest);
13 streamdp = Generator.dp(templatei, vcur , pcur, tquery);
14 result = send_parallel(stream∗);
15 pattern_array[i] = result.pattern;

// Data plane stream reaches the threshold of
the policy

16 if pattern_array != [pattern3, pattern3] then
17 policy.threshold = vcur ;

// Judge the target of the policy
18 if pattern_array == [pattern1, pattern2] then
19 policy.target = volume;

20 if pattern_array == [pattern3, pattern1] then
21 policy.target = rate;

// modify represents increasing p and
decreasing v with v*p unchanged

22 (vcur , pcur) = Next(vcur , pcur, modify);
23 streamprobe = Generator.probe(vprobe);
24 streamtest = Generator.test(vtest);
25 streamdp = Generator.dp(template2, vcur, pcur, tquery);
26 result = send_parallel(stream∗);
27 if result.pattern == pattern3 then
28 policy.counter = packet_number;

29 else
30 policy.counter = packet_byte;
31 policy.threshold = vcur ∗ pcur;

32 return policy;

IV. ATTACK EVALUATION

In this section, we demonstrate our experimental results
of Control Plane Reflection Attacks with a physical testbed.
We first show the experiment setup in our evaluations, and
then conduct extensive experiments for Table-miss Striking
Attack and Counter Manipulation Attack separately. Finally,
we perform some benchmarks to provide low-level details and
insights behind our proposed attacks.

A. Experimental Setup

To demonstrate the feasibility of Control Plane Reflection
Attacks, we set up an experimental scenario as shown in Fig. 3.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



628 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

TABLE III

INDIRECT EVENT DRIVEN APPLICATIONS IN OUR TESTBED

Fig. 3. A typical attack scenario.

We choose several representative applications, and run them
separately on the SDN controller. Flow tables in the switch are
divided into two pipelines, Counting Table for indirect data
plane event, Forwarding Table for direct data plane events.
Each pipeline contains multiple flow entries for the two data
plane events, and flow tables of each pipeline are indepen-
dent and separated, which is the state-of-the-art approach for
application implementations today [13], [42].

Reactive Routing. Reactive Routing is the most common
application integrated into most of the popular controller
platforms [31]–[33], [43]. It monitors Packet-In messages
with a default table-miss in Forwarding Table, and computes
and installs a path for the hosts of the given source and
destination addresses with an appropriate granularity. When
one table-miss occurs, 2N downlink Flow-Mod messages
would be issued to the data plane, where N is the length
of the routing path.

Flow Monitoring. Flow Monitoring is another common
application in SDN-based networks. It is generally imple-
mented with a Counting Table which counts the number
and the bytes of one or multiple flows. The controller polls
the statistics of the Counting Table periodically, conducts
analysis on the collected data, and makes decisions with the
analysis results. In particular, we extend our Flow Monitoring
sketch into four concrete indirect data plane events driven
applications, Heavy hitter [44], Microburst [45], PIAS [46]
and DDoS Detection [28], according to their logic as shown
in Table III.

Our evaluations are conducted on a physical OpenFlow
testbed, testing several representative SDN-enabled hardware
switches, i.e., Pica8 P-3290, HP 5406zl, Dell 8132. These
switch brands are widely used in academia/industry and sup-
port many advanced OpenFlow data plane features, such as
multiple pipelines and almost full OpenFlow specifications
(from version 1.0 to 1.5). Since these switches show similar
limited control message processing capability (e.g., weak
CPU, limited TCAM entry update rate), the experimental

Fig. 4. Attack experimental setups.

results are similar unless otherwise specified. The experimental
topology, as shown in Fig. 4, includes four machines (i.e., h1,
h2, s1, and s2) connected to the hardware switch and a server
running a popular SDN controller Floodlight. The HTTP
service is run on s1 and s2 separately. We consider h2 is a
benign client of the HTTP service and h1 is controlled by the
attacker to launch the reflection attack. All the tested applica-
tions discussed above are hosted in the Floodlight controller.5

In our experiments, Reactive Routing adopts a five-tuples
grained forwarding policy, and four Flow Monitoring-based
applications query the data plane switch every 2 seconds, and
conduct the corresponding control (e.g., issue one Flow-Mod
message) according their logic separately. All the experiments
are repeated three times to report the average circumstances.
Because the results have a small deviation across runs, we do
not show confidence intervals here.

B. Attack Feasibility and Effects

In this subsection, we conduct the experiments for
Table-miss Striking Attack and Counter Manipulation Attack
separately, and show a detailed procedure for probing phase
and triggering phase.

1) Table-miss Striking Attack : For the Reactive Routing
application, when we launch a new flow, the first packet
is inclined to get a high RTT, and the following several
packets would get low RTTs. Since there are only three hosts
on our testbed and ping could launch only one new flow
between each host pair, we resort to UDP probing packets.
We compute the time difference between the request and
reply to obtain the RTT. As depicted in Fig. 5(a), we let
h1 transmit 10 UDP probing packets to a destination port

5We have also tested these applications on other controllers, e.g., ONOS,
which suffer from similar attack effects. Note that our attacks are agnostic
to the concrete SDN controller implementations, because these two kinds of
data plane events are heavily used by almost all the SDN controllers and
all the SDN-enabled hardware switches suffer from such a bottleneck in the
downlink channel.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: CONTROL PLANE REFLECTION ATTACKS AND DEFENSES IN SOFTWARE-DEFINED NETWORKS 629

Fig. 5. Attack feasibility and efficiency for table-miss striking attack.

Fig. 6. RTTs and bandwidth comparison under the saturation attack and the
striking attack.

and then change the destination port. The RTT for the first
packet of each flow is quite distinct from that of the other
packets. When we change any field pertained to five-tuples,
the similar results would be obtained. The modification to
other packet fields would always lead to a quick response. All
the phenomenon indicate that five-tuples grained forwarding
policy is adopted by Reactive Routing.

After inferring the forwarding granularity, the attacker can
then carefully craft a stream of packets whose header spaces
vary according to the granularity. In this way, each attack
packet could strike the default table-miss in the switch,
thus triggering Packet-In and Flow-Mod in the controller
further. Data-to-control Plane Saturation Attack resorts to a
random packet generation approach, making the attack not
so cost-efficient for the attacker. As we can see in Fig. 5(b),
Control Plane Reflection Attacks are much more efficient than
Data-to-control Plane Saturation Attack. Moreover, we also
compare the RTTs and bandwidth for normal users under the
saturation attack and the striking attack. As shown in Fig. 6,
the striking attack could easily obtain a higher RTT and a
lower bandwidth usage for normal users with the same attack
expense, which demonstrates that our Table-miss Striking
Attack is much more cost-efficient and powerful.

2) Counter Manipulation Attack : For the Flow Monitoring-
based applications, we first supply a steady rate of test
packets,6 which would put appropriate loads on the switch
control plane. The rate of test packets depends on the CPU
capability of the target switch. For different brands of switches,
it should be tested beforehand to make the periodical peaks
more obvious by putting an appropriate load to the switch
CPU. The rate of timing probing packets is set as 10 pps. The
results for four applications are similar, as shown in Fig. 7(a).
As we could conclude, Flow Monitoring-based applications
poll the switch for statistics every 2 seconds. In particular,
the double peaks in red rectangle (double-peak phenomenon)
denote two expensive downlink messages are issued succes-
sively. The first peak is attributed to the periodical Statistics

6300 packets per second (pps) for Pica8 P-3290, 250 pps for HP 5406zl,
and 200 pps for Dell 8132. Note that hundreds of pps is a fairly secure rate,
since a legitimate host could issue packets at thousand of pps under normal
circumstance.

Fig. 7. Timing-based patterns for counter manipulation attack.

Query message, while the second is caused by the Flow-
Mod message for the control purpose. We make this inference
because both Flow-Mod and Statistics Query are much more
expensive than Packet-Out for the downlink channel.

Furthermore, more confidential information could be
obtained with the joint trials and analysis of data plane
stream and double-peak phenomenon. If the attacker obtains
a series of successive double-peak phenomenon (as shown
in Fig. 7(b)) with the input of data plane stream template1,
where v is a big value, and obtains a series of intermittent
double-peak phenomenon (Fig. 7(c)), where v is also a big
value, she/he could determine that volume-based (lines 18-19
in Algorithm 1) and packet-number-based (lines 22-28 in
Algorithm 1) statistic calculation method is adopted. This
is because packet number volume-based statistic calculation
approach is sensitive to stream with a high pps. The other
three cases are also listed in Table IV. From this table,
we can conclude the concrete statistic calculation approach
the application adopts. Furthermore, with the variations of v
and p, the attacker could infer the critical value of volume or
rate, as illustrated in Algorithm 1 (line 17 and 31). In addition,
we can verify our inference with a lot of other ways, not only
the proposed two data plane stream templates as shown above,
which we intend to expand over time. In particular, we test our
four indirect event driven applications, and find them fall in
the distribution in Table V. This is consistent with the policies
of each application, which demonstrates the effectiveness of
our probing phase.

With the results (query period, packet number/byte-
based, volume/rate values) obtained from the probing phase,
we move to the second step and start to launch our
Counter Manipulation Attack. We select one application,
PIAS, as a representation to be shown here, and set its
priority as 3 levels. We initiate 10 new flows every second,
and carefully set the sent bytes of each flow in each period,
making it exactly bigger than the critical value we probed.
As a consequence, a number of Flow-Mod are issued to
the switch when the statistic query/reply occurs. As shown
in Fig. 8, the number of Flow-Mod messages could increase
to as high as 60 at the end of each period. This would
incur quite high loads to the software agent of the switch at
this moment. As an extreme case, when the attacker controls
about one thousand flows intentionally and manipulates all the
flow to trigger the critical values simultaneously, thousands of

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



630 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

TABLE IV

RELATIONSHIP BETWEEN DATA PLANE STREAM AND DOUBLE-PEAK PHENOMENON

Fig. 8. Flow-Mod message triggering number for PISA under attacks.

Fig. 9. Different background traffic requires different rate of test packets.

Fig. 10. Switch re-connection under the extreme case.

Flow-Mod messages are directed to the switch at the end of
each period, which would cause catastrophic results, i.e., the
connection between the SDN controller and the switch is
disrupted, as shown in Fig. 10.

C. Attack Fundamentals and Analysis

In this subsection, we study more about low-level details of
Control Plane Reflection Attacks and gives more insights.

1) Test Packet Rate and Test Packet Type: Fig. 11 shows
the timing probe RTTs as the rate of test packets varies
where the controller is configured to issue a Flow-Mod mes-
sage for each test packet. Fig. 12 shows the timing probe
RTTs as the Statistics Query rate varies. Fig. 13 shows
the timing probe RTTs as the rate of test packets varies
where the controller processes each test packet with a Packet-
Out message. As we can see from these figures, different
downlink messages have diverse expenses for the downlink
channel, and all of the three scenarios encounter a significant
nonlinear jump. In particular, when the controller generates a

Fig. 11. Timing probe RTTs as Flow-Mod rate varies.

Fig. 12. Timing probe RTTs as Statistic Query rate varies.

Fig. 13. Timing probe RTTs as Packet-Out rate varies.

Flow-Mod message for each test packet, the RTTs experience
a ∼1000 times increase at ∼60 pps. For Statistics Query
messages, the RTTs increase ∼100 times at ∼110 pps. And
for Packet-Out messages, the RTTs increase ∼100 times at
∼500 pps. Meanwhile, we measure the resource usage of the
hardware switch and the controller, and find that the switch
CPU could reach above 90% at the point of nonlinear jump,
while the memory of switch, the CPU and memory of control
server are relatively low (at most 30%). In addition, we have
conversations with several switch vendors (e.g., Pica 8, Biwei
Network Technology Co., Ltd), and learn that the switch
control actions (e.g. Flow-Mod, Statistics Query) must con-
tend for the limited bus bandwidth between a switch’s CPU
and ASIC, and the insertion of a new flow rule requires
the rearrangement of rules in TCAM, which lead to the
results that the expense of Flow-Mod >= Statistics Query �
Packet-Out [13], [19].

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: CONTROL PLANE REFLECTION ATTACKS AND DEFENSES IN SOFTWARE-DEFINED NETWORKS 631

2) The Impact of Background Traffic: The background
traffic does have impacts for the Control Plane Reflection
Attacks. First, it may affect the accuracy of probing phase.
In fact, a moderate rate of background traffic would not
weaken the effectiveness of the probing; rather, it amplifies
the probing effect. The reason behind this is that the effect
of background traffic is somewhat like the role played by test
packets, and it would put some baseline loads to the switch
protocol agent, which would make the probing more accurate.
To illustrate this, we use three different background traffic by
replaying them at an increased rate and conduct the probing
phase in our testbed. For a certain rate of background traffic,
we select a rate of test packets that can lead to an obvious
and periodical peaks for the RTTs of timing probing packets.
As we can see from Fig. 9, with the rate of background
traffic increasing, the rate of test packets decreases. This is
because when the rate of background traffic increases, less test
packets are required to fit the load of the nonlinear jump point
in the hardware switches. More importantly, under our test,
Control Plane Reflection Attacks can always succeed, which
demonstrate that our attacks are agnostic to the background
traffic. Certainly, an excessively high-rate background traffic
may lower the probing accuracy. This is because when the load
exceeds the nonlinear jump, the loads incurred by Statistics
Query would not cause the obvious and periodical peaks
for the RTTs of timing probing packet, instead, the patterns
may become random and irregular. However, in such cases,
the switch is already suffering, and the network inclines to
become problematical. Second, the background traffic may
also affect the trigger phase. Actually, this influence is positive
as well. The background traffic would always need some
interactions with the controller, thus inevitably bringing some
downlink messages to the control channel, which would boost
the effects of control plane reflection attacks.

3) Study of Application Control Policies: During our inves-
tigation on the indirect event driven control plane applications,
an interesting thing we find is that although the logics and
purposes of different applications vary, they all follow a similar
procedure: collecting, analyzing, and controlling, as illustrated
in Fig. 1. Since the switch plays a complementary role
to maintain the view not directly visible to the controller,
current switch [47] only provides several essential data plane
statistics, such as packet counters and byte counters. Then
the control plane applications analyze these pulled statistics
and make decisions whether issuing flow rules to adjust the
state of the data plane. Surprisingly, the seemingly complicated
control logics could mainly be divided into two-multiple-two
fundamental dimensions, i.e., (Packet Number, Packet Byte) ×
(Volume-based, Rate-based). We find nearly all the known
applications from both academic and industry can be cate-
gorized into these four distributions, like Table V.

V. COUNTERMEASURE ANALYSIS

The control plane reflection attack is deeply rooted in
SDN architecture that the performance of existing commodity
SDN-enabled hardware switches could not suffice the need of
the SDN applications. We therefore give several countermea-
sures against these reflection attacks.

The root cause of the reflection attacks is that an attacker
can force the control plane applications to reflect responses to
the switches. If we disable the dynamic features of the appli-
cations, just as traditional network where the traffic in the data

TABLE V

DISTRIBUTION OF THE FOUR INDIRECT EVENT DRIVEN APPLICATIONS

plane will not change the configurations of the switch from
the control plane, the attack surface will be eliminated. While
effective, this approach is undesirable since it comes at the
expense of less fine-grained control, visibility, and flexibility
in traffic management, as evidently required in [9], [48], [49].
Alternatively, the data plane capacity can be increased by
optimizing the software protocol agent implementation or
adding computation components to the switches. However,
the capacity and the update rate of TCAM is inherently
rooted in the hardware design of memory chip, which could
not be improved immediately and would be the bottleneck
of the switches in the foreseeable future [17]. The vantage
point we want to claim here is that the applications should
be carefully designed and deployed under the dynamic SDN
circumstance, and this potential attack surface should be taken
into consideration when the applications want to use these new
dynamic features.

Despite limiting the use of dynamic features for net-
work applications, a more promising defense methodology is
admitting the benefit of this dynamic control and devising
some approaches to make the reflection attacks unfeasible.
One promising method is to deploy some network intrusion
detection systems (IDSs) with the new attack signatures in
the SDN-based network. If the IDSs detect such new prob-
ing/triggering patterns, quarantine the suspicious hosts and
alert the network operators. Another way is to add some
detection and prevent mechanisms in the controller. The effect
of the reflection attacks lies in that a flash crowd of downlink
messages swarms to the switch. If we could deploy some
detection measure and limit the downlink message transmis-
sion rate in the controller, this could effectively prevent the
switches from being overwhelmed. In some cases, if the
latency of control messages is not a concern, we can intuitively
add some latency to random downlink messages. This would
make the patterns/policies of direct/indirect data plane events
difficult to sniff and obtain. These approaches can effectively
breach either the probing phase or the triggering phase, making
the attacks hard to be conducted.

VI. SWITCHGUARD: A PRIORITY-BASED

SCHEDULER ON SWITCH

Although the aforementioned countermeasures can take
effect under some certain scenarios, in this section, we give a
more general and systematical solution, SwitchGuard, to mit-
igate these reflection attacks. The key idea is to discrimi-
nate good from evil, and prioritize downlink messages with
discrimination results. We propose a multi-queue scheduling
strategy, to achieve different latency for different downlink
messages. The scheduling strategy is based on the statistics
of downlink messages in a novel granularity during the past
period, which takes both fairness and efficiency into consid-
eration. When the downlink channel is becoming congested,
the malicious downlink messages are inclined to be put into

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



632 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Fig. 14. SwitchGuard framework design.

a low-priority scheduling queue and the requirements of good
messages are more likely to be satisfied.

A. SwitchGuard Design

The architecture of SwitchGuard is shown in Figure 14.7

SwitchGuard mainly redesigns two components of SDN archi-
tecture. On the switch side, it changes the existing software
protocol agent to multi-queue based structure, and schedules
different downlink messages with their types and priorities.
On the controller side, it adds a Behavior Monitor module as a
basic service, which collects the downlink message events and
assigns different priorities to different messages dynamically.

1) Multi-Queue Based Software Protocol Agent: In order
to prioritize the downlink messages, we redesign the software
protocol agents of the existing switches. A naive approach
is to modify the existing single queue model directly into
priority-based multi-queue model, and enqueue all the down-
link messages into different queues with their priorities and
dequeue at different scheduling rates. However, the types of
downlink messages vary, and different message types have
diverse requirements, for example, if Handshake messages and
Modify State messages are put into the same queue, the latency
requirement of the former may be delayed by the latter such
that the handshake between the controller and the switches
could not be established timely.

To this end, we summarize the downlink messages into
the following four categories: (1) Modify State Messages,
(2) Statistic Query Messages, (3) Configuration Messages, and
(4) Consistency Required Messages, and design a Classifier to
classify the downlink messages into different queues accord-
ingly. The first two types are related to the behaviors of hosts
and applications, so we design a multi-queue for each of them.
The multi-queue consists of three levels (quick, slow, block),
and each level is designed for the corresponding priority.
The third type serves for basic services of the controller
(e.g. Handshake, LLDP), while the detail of the last type is
illustrated in Section VI-A.3, and both of them inherit from
the original single queue. Classifier makes use of ofp_header
field in OpenFlow Header to distinguish message type, and a
2-bit packet metadata to obtain priority.

7In SwitchGuard, we use the original single-queue model to process uplink
messages, and omit this detail in Figure 14.

With the downlink messages in the queues, a Scheduler is
designed to dequeue the messages with a scheduling algorithm.
In order not to overwhelm the capability of ASCI/Forwarding
Engine, a Finish Signal should be sent back to the Scheduler
once a Modify State/Statistic Query message is processed.
Then the Scheduler knows whether to dequeue a next message
of the same type from queues. We design a time-based
scheduling algorithm, setting different strides for different
queues. For the last two queues (Configuration Messages,
Consistence Required Messages), the stride is set as 0, which
means whenever there is a message, it would be dequeued
immediately. For the first two multi-queues, the stride for
queue of quick level is set as 0, for slow level is set as a
small time interval, while for block level is set as a relatively
bigger value. With the principles illustrated above, we design
the scheduling algorithm as Algorithm 2.

Algorithm 2 The Scheduling Algorithm for Protocol
Agent

// Initialization
1 foreach que ∈ queues do
2 set que.stride;
3 que.time = getcurrenttime();

// Enter the Scheduler thread
4 while true do
5 foreach que ∈ queues do
6 if que.stride ≤ getcurrenttime() − que.time then
7 if que.empty() == false then
8 que.time = getcurrenttime();
9 que.dequeue();

10 else
11 que.time = getcurrenttime();

2) Behavior Monitor: In order to distinguish different
downlink messages with different priorities, we require
an appropriate Monitoring granularity. Previous approaches
mainly conduct the monitoring with the granularity of source
host [28], [50], and react to the anomalies on the statis-
tics. However, in the control plane reflection attacks, these
approaches are no longer valid and effective. For example,
if we only take the features of the data plane traffic into con-
sideration, and schedule with the statistics of source hosts [51],

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: CONTROL PLANE REFLECTION ATTACKS AND DEFENSES IN SOFTWARE-DEFINED NETWORKS 633

it would inevitably violate the heterogeneous requirements of
various applications.

To address this challenge, we propose the novel abstraction
of Host-Application Pair (HAP), and use it as the basic
granularity for monitoring and statistics. These two dimensions
are easy to be obtained from the uplink messages and the
configurations of the controller. As discussed in Section II,
the downlink channel for processing downlink messages is
the domain resource in the SDN architecture that it must
be carefully managed and allocated to fully leverage the
benefits of the SDN applications. Considering K applications
exist on the control plane, their requirements for downlink
messages are represented as vector �a0 = 〈a1, a2, . . . aK〉, and
N hosts/users in the data plane, corresponding requirements
vector �h0 = 〈h1, h2, . . . hN 〉. �a0 and �h0 are both set by
the network operators, depending on the property of the
applications and the pay of hosts/users. Thus the expected
resource allocation matrix

R0 = �a0
T · �h0 =

⎛
⎜⎜⎝

a1h1 a1h2 . . . a1hN

a2h1 a2h2 . . . a2hN

...
...

. . .
...

aKh1 aKh2 . . . aKhN

⎞
⎟⎟⎠

And the expected resource allocation ratio matrix is

I0 =
R0∑K

k=1

∑N
n=1 akhn

During the past period (T seconds), the statistics of HAP is
represented as resource occupation matrix

R =

⎛
⎜⎜⎝

r11 r12 . . . r1N

r21 r22 . . . r2N

...
...

. . .
...

rK1 rK2 . . . rKN

⎞
⎟⎟⎠

And the sum of the elements in R is denoted as

Sum =
K∑

k=1

N∑
n=1

rkn

Suppose the maximum capability of downlink channel in
T seconds is Sum0, Sum

Sum0
denotes the resource utilization

rate of the downlink channel. In order to save resources of
the control channel, we design our SwitchGuard system as
attack-driven, which means when Sum

Sum0
< α, SwitchGuard

is in sleep state except for Event Collector. All the downlink
messages flow through the third queue (queue for Configura-
tion Messages). α is a danger value between 0 and 1, set by
the network operators.

When the reflection attacks are detected, the Priority Com-
position Module is wakened and starts to calculate the penalty
coefficient of each HAP

βkn =
rkn − iknSum0

rkn

ikn, rkn denote the corresponding element in matrix I0,R.
If βkn is negative, we set it as 0. Then we use two thresholds
(thh, thl) to map the penalty coefficient βkn into priority
(00, 01 or 10) and tag a 2-bit field into packet metadata to
encapsulate priority.

Fig. 15. Defense effect.

3) Policy Consistency: Multi-queues based software pro-
tocol agent may violate the consistency of some downlink
messages. For example, some control messages need to be sent
in a particular order for correctness reasons, however, in this
multi-queues based software agent, if a previous arriving
message is put into a queue with high load while a later
arriving message is put into a queue with low load, the order
to maintain correctness may be violated.

To address this issue, we design a coordination mechanism
between the Behavior Monitor and Classifier in software
protocol agent. If a series of downlink messages require
consistency, their 2-bit priority packet metadatas are supposed
to be tagged with 11 by the Priority Composition. Then the
Classifier in the software protocol agent will check the label
to learn whether the message has the consistency demand.
If the consistency demand is confirmed, this message will be
scheduled to the queue for consistency required messages.

B. Defense Evaluation

We implement the prototype of SwitchGuard system,
including Behavior Monitor and Software Protocol Agent,
on Floodlight [33] and Open vSwitch [52]8 with about
4000 Lines of Code. We set up PISA as a typical appli-
cation on the Floodlight controller. We use Open vSwitch
and set corresponding thresholds to limit its control channel
throughput, making its flow rule update rate (130 pps) and flow
table size (2000) analogous to the hardware switches. In our
testbed, the time intervals for the three levels on the Scheduler
are set as 0, 3 and 10 respectively (nanoseconds), the two
thresholds(thh, thl) on the Priority Composition Module are
set as 0.5 and 0.1 accordingly.

To demonstrate the defense effect of SwitchGuard, we use
the average value of the flow rule installation / statistic
query latency of normal users/applications as representative
metrics, which is named as Event Response Time in our
figures. As shown in Figure 15,9 for legitimate messages,
with the native system, the event response time becomes
extremely large when the rate of downlink messages is above
110 packets per second. While with SwitchGuard, the event
response time is nearly unchanged. These experimental results
illustrate that our SwitchGuard provides effective protection
for both the legitimate flow rule installation and the legitimate
statistics query.

8Since we cannot modify the (proprietary) software agent in hardware
switches, we have to use Open vSwitch, an open-source software switch,
to demonstrate the effectiveness of our SwitchGuard solution. In future,
we plan to cooperate with switch vendors and integrate our solution into
their next-generation products.

9Since this experiment is conducted on the software environment, the non-
linear jump point is a little different from the previous hardware experimental
results.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



634 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Fig. 16. Defense overhead.

As for the overheads of SwitchGuard, we measure the
latency introduced by SwitchGuard. Compared with native
OpenFlow, packets in SwitchGuard need to go through two
extra components, Event Collector of Behavior Monitor and
Configuration Message queue of Software Protocol Agent
under normal circumstance, since other components are in
sleep state when no attack is detected. When attack happens,
packets must pass a full path in Behavior Monitor and Soft-
ware Protocol Agent. As shown in Fig 16, the latency is almost
the same between native OpenFlow and SwitchGuard under
normal circumstance. Even under attacks, Behavior Monitor
and Software Protocol Agent only incur a latency less than
100 us in average. All of these demonstrate that SwitchGuard
only incur negligible delay for the control channel messages.

VII. DISCUSSION

Network access control policy. One may concern that
whether effective network access control policies can prevent
such Control Plane Reflection Attacks. In fact, since the
signature of our second attack vector, Counter Manipulation
Attack, has not been studied by academia/industry previously,
it is rather hard for operators to install a set of accurate
access control policies. Moreover, blindly deploying access
control policies would inevitably cause collateral damages
for legitimate users. As a result, it must be possible that
attacker-controlled host can probe some benign hosts in the
SDN-based network. Therefore, our Counter Manipulation
Attack can be successfully launched.

Independence of attack vectors and applications.
We only concentrate on the applications’ composition of two
types of data plane events, somewhat akin to the idea of one
big application abstraction. We build our attack vectors with
respect to these two data plane events, making the concrete
logics of the control plane independent on our attack vectors.

Emerging programmable data planes. Current prototypes,
attack and defense are based on OpenFlow-based hardware
switches. We believe the core idea of control plane reflection
attack is applicable to the emerging generation of program-
mable data planes, e.g. P4 and RMT chips [53], because these
platforms also use traditional TCAM-based flow tables and
control plane reflection attack addresses a property of TCAM
that is invariant to underlying TCAM design.

Generality of the SwitchGuard system. SwitchGuard
is also applicable for no-adversary circumstances, such as
flash crowds of downlink messages under normal conditions.
By prioritizing the downlink messages, SwitchGuard can pro-
vide lower latencies for more important messages under the
congestion of control channel.

Evading SwitchGuard defense. Like any anomaly detec-
tion systems, SwitchGuard is not perfect or complete. If a
attacker wants to evade the SwitchGuard defense, to the best of

our knowledge, the only approach is to reduce the occupation
of downlink resources. Nevertheless, in this way, the goal of
protection is already achieved.

Source address forgery problem. One concern is that an
attacker may forge another host’s source address to pollute the
HAP statistics of other hosts. Nevertheless, in SwitchGuard,
we can also harness an edge switch port to identify a host.
As the header fields of the upstream messages are assigned
by the hardware switch, the attacker is not able to forge or
change this field.

Priority field of control messages. During our experiments,
we discover that the priority orders of a set of flow rules
have a significant impact on the insertion rate of flow rules.
In particular, inserting a sequence of flow rules in order of
increasing priority would be extremely heavyweight, in which
case the switch could crash unexpectedly. Priority should be
carefully used during dynamic configuration, especially when
this configuration could be triggered by the data plane traffic.

VIII. RELATED WORK

Our work is deeply inspired by the following two topics.
DoS attacks in SDNs. Shin and Gu [37] first proposes the

concept of data-to-control plane saturation attack against SDN.
To mitigate this dedicated DoS attack, AVANT-GUARD [38]
introduces connection migration module and actuating trig-
gers module to extend the data plane functions. How-
ever, it can be applicable to TCP protocol only. Later,
a protocol-independent defense framework, FloodGuard [39],
pre-installs proactive flow rules to reduce table-miss packets,
and forwards table-miss packets to additional data plane
caches. Furthermore, to obtain the benefit of no hardware mod-
ification and addition, FloodDefender [27] offloads table-miss
packets to neighbor switches and filters out attack traffic
with two-phase filtering. Control Plane Reflection Attacks
distinguish themselves from previous works in both attack
methods and attack effects. On one hand, the saturation attack
uses a quite straightforward attack method that attacker simply
floods arbitrary attack traffic to trigger the direct data plane
events while reflection attacks resort to a more advanced
and sophisticated techniques, and a two-phrase probing-trigger
approach is specially developed to exploit both direct and
indirect data plane events. On the other hand, since the
simplicity of the saturation attack, it is not hard to capture the
attack, thus it could have limited attack effects. By contrary,
the reflection attack is more stealthy and same attack expenses
of the attacker could cause more obvious attack effects for
victims. In addition, Scotch [9] alleviates the communication
bottleneck between control plane and data plane with a pool
of vSwitches distributed across the network, and it shares the
same observation that SDN-enabled hardware switches have
very limited capacity for control channel communications.

Timing-based side channel attacks. Side channel attacks
have long existed in distributed systems, and it is usually
used to leak the secret information (e.g. secret cryptographic
keys) of dedicated systems. Publications more related to our
work are various works applying side channel attacks to
SDN. Shin and Gu [37] presents an SDN scanner which
could determine whether a network is using SDN or not.
Leng et al. [54] proposes to measure the response time of
requests to obtain the approximate capacity of switch’s flow
table. Sonchack et al. [13] demonstrates an inference attack
to time the control plane, which could be used to infer host
communication patterns, ACL entries and network monitoring

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: CONTROL PLANE REFLECTION ATTACKS AND DEFENSES IN SOFTWARE-DEFINED NETWORKS 635

policies. Liu et al. [55] permits the attacker to select the best
probes with a Markov model to infer the recent occurrence
of a target flow. Our attack methods are somewhat inspired
by these previous works. However, all of them only focus on
the direct data plane events, and remain at a low level to infer
the existence of network policies/device configurations. To the
best of our knowledge, our work proposes the exploitation of
indirect data plane events for the first time, and take the next
step that we not only take the existence into consideration,
but also obtain more concrete policies and policy thresholds
to promote the attack effects.

IX. CONCLUSION

In this paper, we present Control Plane Reflection Attacks
to exploit the limited processing capability of SDN-enabled
hardware switches by using direct and indirect data plane
events. Moreover, we develop a two-phase attack strategy to
make such attacks efficient and powerful. The experiments on
a physical testbed showcase the reflection attacks can cause
extremely harmful effects with acceptable attack expenses. To
mitigate reflection attacks, we discuss several countermeasures
from diverse perspectives, and further propose a general,
systematical defense framework SwitchGuard, to detect anom-
alies of control messages and prioritize them based on the
host-application pair. The evaluation results of SwitchGuard
demonstrate its effectiveness under the reflection attacks with
minor overhead. As SDN is adopted widely and more dynamic
applications emerge in both academic and industry, it is likely
that the reflection attack will be observed in the wild. We hope
our work could act as a catalyst to make researchers and
practitioner rethink the interactions between the data plane
and the control plane, and devise further ways to promote the
coordinated development of both to make SDN more secure.

REFERENCES

[1] M. Zhang, G. Li, L. Xu, J. Bi, G. Gu, and J. Bai, “Control plane reflec-
tion attacks in SDNs: New attacks and countermeasures,” in Research in
Attacks, Intrusions, and Defenses. Cham, Switzerland: Springer, 2018,
pp. 161–183.

[2] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance:
Dynamic access control for enterprise networks,” in Proc. 1st ACM
Workshop Res. Enterprise Netw. (WREN), 2009, pp. 11–18.

[3] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server load
balancing gone wild,” Hot-ICE, vol. 11, p. 12, Mar. 2011.

[4] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari,
“Plug-n-serve: Load-balancing Web traffic using openflow,” ACM Sig-
comm Demo, vol. 4, no. 5, p. 6, 2009.

[5] M. Koerner and O. Kao, “Multiple service load-balancing with open-
flow,” in Proc. IEEE 13th Int. Conf. High Perform. Switching Routing,
Jun. 2012, pp. 210–214.

[6] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching ASICs,”
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2017,
pp. 15–28.

[7] G. M. Insights. (Jul. 2018). Software Defined Networking Market
to Hit $88bn by 2024: Global Market Insights. [Online]. Available:
https://globenewswire.com

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, Aug. 2011.

[9] A. Wang, Y. Guo, F. Hao, T. V. Lakshman, and S. Chen, “Scotch:
Elastically scaling up SDN control-plane using vSwitch based overlay,”
in Proc. 10th ACM Int. Conf. Emerg. Netw. Experiments Technol.
(CoNEXT), 2014, pp. 403–414.

[10] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:
Dependency-aware rule-caching for software-defined networks,” in Proc.
Symp. SDN Res., Mar. 2016, p. 6.

[11] H. Xu, Z. Yu, X.-Y. Li, C. Qian, L. Huang, and T. Jung, “Real-time
update with joint optimization of route selection and update scheduling
for SDNs,” in Proc. IEEE 24th Int. Conf. Netw. Protocols (ICNP),
Nov. 2016, pp. 1–10.

[12] X. Jin et al., “Dynamic scheduling of network updates,” ACM SIG-
COMM Comput. Commun. Rev., vol. 44, no. 4, pp. 539–550, 2014.

[13] J. Sonchack, A. Dubey, A. J. Aviv, J. M. Smith, and E. Keller, “Timing-
based reconnaissance and defense in software-defined networks,” in
Proc. 32nd Annu. Conf. Comput. Secur. Appl., Dec. 2016, pp. 89–100.

[14] H. Chen and T. Benson, “The case for making tight control plane latency
guarantees in SDN switches,” in Proc. Symp. SDN Res., Apr. 2017,
pp. 150–156.

[15] K. He et al., “Measuring control plane latency in SDN-enabled
switches,” in Proc. 1st ACM SIGCOMM Symp. Softw. Defined Netw.
Res. (SOSR), 2015, p. 25.

[16] K. He, J. Khalid, S. Das, A. Akella, E. Li, and M. Thottan, “Mazu:
Taming latency in software defined networks,” Dept. Comput. Sci., Univ.
Wisconsin-Madison, Madison, WI, USA, Tech. Rep., 2014.

[17] X. Wen et al., “RuleTris: Minimizing rule update latency for TCAM-
based SDN switches,” in Proc. IEEE 36th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jun. 2016, pp. 179–188.

[18] A. Lazaris et al., “Tango: Simplifying SDN control with automatic
switch property inference, abstraction, and optimization,” in Proc.
10th ACM Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT), 2014,
pp. 199–212.

[19] M. Kuzniar, P. Peresíni, D. Kostic, and M. Canini, “Methodology,
measurement and analysis of flow table update characteristics in
hardware openflow switches,” Comput. Netw., vol. 136, pp. 22–36,
May 2018.

[20] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras,
“DELTA: A security assessment framework for software-defined net-
works,” in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), vol. 17, 2017.

[21] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detecting
security attacks in software-defined networks,” in Proc. Netw. Distrib.
Syst. Secur. Symp., vol. 15, 2015, pp. 8–11.

[22] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
Netw. Syst. Design Implement. Symp. (NSDI), vol. 10, 2010, p. 19.

[23] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.
Exp. Technol. (CoNEXT), 2011, p. 8.

[24] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. NSDI, vol. 13, 2013, pp. 29–42.

[25] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “SCREAM: Sketch
resource allocation for software-defined measurement,” in Proc. 11th
ACM Conf. Emerg. Netw. Exp. Technol. (CoNEXT), 2015, p. 14.

[26] X. Liu, M. Shirazipour, M. Yu, and Y. Zhang, “MOZART: Temporal
coordination of measurement,” in Proc. Symp. SDN Res., Mar. 2016,
p. 13.

[27] G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “FloodDefender:
Protecting data and control plane resources under SDN-aimed DoS
attacks,” in Proc. IEEE INFOCOM-IEEE Conf. Comput. Commun.,
May 2017, pp. 1–9.

[28] Y. Xu and Y. Liu, “DDoS attack detection under SDN context,” in
Proc. IEEE INFOCOM-35th Annu. IEEE Int. Conf. Comput. Commun.,
Apr. 2016, pp. 1–9.

[29] S. Shin and G. Gu, “CloudWatcher: Network security monitoring using
OpenFlow in dynamic clouds? Networks (or: How to provide security
monitoring as a service in clouds?),” in Proc. 20th IEEE Int. Conf. Netw.
Protocols (ICNP), Oct. 2012, pp. 1–6.

[30] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[31] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a model-driven SDN controller architecture,” in Proc. IEEE Int. Symp.
World Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.

[32] P. Berde et al., “Onos: Towards an open, distributed SDN OS,” in Proc.
HotSDN, 2014, pp. 1–6.

[33] F. Community. (Aug. 2017). Floodlight. [Online]. Available: http://www.
projectfloodlight.org/floodlight/

[34] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. OSDI, vol. 10, 2010, pp. 1–6.

[35] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw., 2010, p. 3.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



636 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

[36] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proc. 1st Workshop Hot
Topics Softw. Defined Netw. (HotSDN), 2012, pp. 19–24.

[37] S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics
Softw. Defined Netw. (HotSDN), 2013, pp. 165–166.

[38] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2013, pp. 413–424.

[39] H. Wang, L. Xu, and G. Gu, “FloodGuard: A DoS attack prevention
extension in software-defined networks,” in Proc. 45th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., Jun. 2015, pp. 239–250.

[40] J. Postel et al. Internet Control Message Protocol, document RFC 792,
Internet Network Working Group, 1981.

[41] J. Postel, “Transmission control protocol,” IETF, Tech. Rep. RFC, 1981.
[42] Y. Li, G. Yao, and J. Bi, “Flowinsight: Decoupling visibility from

operability in SDN data plane,” ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 4, pp. 137–138, 2015.

[43] A. Community. (Jul. 2017). HP SDN App Store. [Online]. Available:
http://community.arubanetworks.com/t5/SDN-Apps/ct-p/SDN-Apps

[44] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. Conf. ACM SIGCOMM Conf. (SIGCOMM), 2016,
pp. 101–114.

[45] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: Micro load balancing for low-latency data center networks,”
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2017,
pp. 225–238.

[46] W. Bai, K. Chen, H. Wang, L. Chen, D. Han, and C. Tian, “Information-
agnostic flow scheduling for commodity data centers,” in Proc. NSDI,
2015, pp. 455–468.

[47] ONF. (2014). Openflow Switch Specification Version 1.5.0. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-switch-
v1.5.0.noipr.pdf

[48] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” ACM SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, 2007.

[49] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable and
flexible cellular core network architecture,” in Proc. 9th ACM Conf.
Emerg. Netw. Exp. Technol. (CoNEXT), 2013, pp. 163–174.

[50] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in Proc. IEEE Local Comput. Netw.
Conf., Oct. 2010, pp. 408–415.

[51] M. Zhang, J. Bi, J. Bai, Z. Dong, Y. Li, and Z. Li, “FTGuard:
A priority-aware strategy against the flow table overflow attack in SDN,”
in Proc. SIGCOMM Posters Demos-SIGCOMM Posters Demos, 2017,
pp. 141–143.

[52] O. vSwitch Community. (Aug. 2017). Open Vswitch. [Online]. Avail-
able: http://openvswitch.org/

[53] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[54] J. Leng, Y. Zhou, J. Zhang, and C. Hu, “An inference attack model
for flow table capacity and usage: Exploiting the vulnerability of flow
table overflow in software-defined network,” 2015, arXiv:1504.03095.
[Online]. Available: http://arxiv.org/abs/1504.03095

[55] S. Liu, M. K. Reiter, and V. Sekar, “Flow reconnaissance via timing
attacks on SDN switches,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jun. 2017, pp. 196–206.

Menghao Zhang (Graduate Student Member, IEEE)
received the B.S. degree in computer science from
Tsinghua University, China, where he is currently
pursuing the Ph.D. degree with the Institute of Net-
work Science and Cyberspace. His research interests
include software-defined networking, network func-
tion virtualization, and cyber security.

Guanyu Li received the B.S. degree from the School
of Computer Science and Technology, Huazhong
University of Science and Technology, China.
He is currently pursuing the Ph.D. degree with
the Institute of Network Science and Cyberspace,
Tsinghua University. His research interests include
software-defined networking, network function vir-
tualization, and cyber security.

Lei Xu received the B.S. degree from the School of
Computer Science, Nanjing University of Posts and
Telecommunications, China, and the Ph.D. degree
in computer science from Texas A&M University,
College Station, TX, USA. He is currently an Engi-
neer with Palo Alto Networks. His research interests
include network/system security, software-defined
networking, and network function virtualization.

Jiasong Bai received the B.S. degree in computer
science from Tsinghua University, China, where
he is currently pursuing the master’s degree with
the Institute of Network Science and Cyberspace.
His research interests include software-defined net-
working, network function virtualization, and cyber
security.

Mingwei Xu (Senior Member, IEEE) received the
B.S. and Ph.D. degrees from Tsinghua University.
He is currently a Full Professor with the Department
of Computer Science and Technology, Tsinghua
University. His research interest includes computer
network architecture, high-speed router architecture,
and network security.

Guofei Gu (Fellow, IEEE) received the Ph.D. degree
in computer science from the College of Computing,
Georgia Tech, in 2008. He is currently a Full Profes-
sor with the Department of Computer Science and
Engineering, Texas A&M University. His research
interests include network and systems security, such
as malware and APT defense, software-defined net-
working (SDN/NFV) security, mobile and IoT secu-
rity, and intrusion/anomaly detection.

Jianping Wu (Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees from Tsinghua University,
Beijing, China. He is currently a Full Professor and
the Director of the Network Research Center and a
Ph.D. Supervisor with the Department of Computer
Science and Technology, Tsinghua University. Since
1994, he has been an in charge of the China Edu-
cation and Research Network. His research interests
include the next-generation Internet, IPv6 deploy-
ment and technologies, and Internet protocol design
and engineering.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:18:07 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


