
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021 1509

Enabling Performant, Flexible and Cost-Efficient
DDoS Defense With Programmable Switches

Guanyu Li , Menghao Zhang , Graduate Student Member, IEEE,

Shicheng Wang , Graduate Student Member, IEEE, Chang Liu, Mingwei Xu , Senior Member, IEEE,

Ang Chen, Hongxin Hu , Member, IEEE, Guofei Gu, Fellow, IEEE, Qi Li , Senior Member, IEEE,

and Jianping Wu, Fellow, IEEE

Abstract— Distributed Denial-of-Service (DDoS) attacks have
become a critical threat to the Internet. Due to the increasing
number of vulnerable Internet of Things (IoT) devices, attack-
ers can easily compromise a large set of nodes and launch
high-volume DDoS attacks from the botnets. State-of-the-art
DDoS defenses, however, have not caught up with the fast devel-
opment of the attacks. Middlebox-based defenses can achieve
high performance with specialized hardware; however, these
defenses incur a high cost, and deploying new defenses typically
requires a device upgrade. On the other hand, software-based
defenses are highly flexible, but software-based packet processing
leads to high performance overheads. In this article, we propose
POSEIDON, a system that addresses these limitations in today’s
DDoS defenses. It leverages emerging programmable switches,
which can be reconfigured in the field without additional hard-
ware upgrades. Users of POSEIDON can specify their defense
strategies in a modular fashion in the form of a set of defense
primitives; this can be further customized easily for each network
and extended to include new defenses. POSEIDON then maps
the defense primitives to run on programmable switches—
and when necessary, on server software—for effective defense.
When attacks change, POSEIDON can reconfigure the underly-
ing defense primitives to respond to the new attack patterns.
Evaluations using our prototype demonstrate that POSEIDON
can effectively defend against high-volume attacks, easily support
customization of defense strategies, and adapt to dynamic attacks
with low overheads.

Manuscript received September 25, 2020; revised January 30, 2021;
accepted February 21, 2021; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor N. Zhang. Date of publication March 26, 2021; date
of current version August 18, 2021. This work was supported in part by the
National Key R&D Program of China under Grant 2017YFB0801701 and
in part by the National Science Foundation of China under Grant 61872426,
Grant 61625203, and Grant 61832013. This article was presented at the confer-
ence of NDSS 2020. (Corresponding authors: Menghao Zhang; Mingwei Xu.)

Guanyu Li, Menghao Zhang, Shicheng Wang, Chang Liu, Mingwei Xu,
Qi Li, and Jianping Wu are with the Institute for Network Sciences and
Cyberspace, Tsinghua University, Beijing 100084, China, also with the
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China, and also with the Beijing National Research Center
for Information Science and Technology (BNRist), Beijing 100084, China
(e-mail: ligy18@mails.tsinghua.edu.cn; zhangmh16@mails.tsinghua.edu.cn;
wangsc19@mails.tsinghua.edu.cn; l-c19@mails.tsinghua.edu.cn; xumw@
tsinghua.edu.cn; qli01@tsinghua.edu.cn; jianping@cernet.edu.cn).

Ang Chen is with the Department of Computer Science, Rice University,
Houston, TX 77005-1892 USA (e-mail: angchen@rice.edu).

Hongxin Hu is with the Department of Computer Science and Engineering,
University at Buffalo SUNY, New York, NY 14260 USA (e-mail: hongxinh@
buffalo.edu).

Guofei Gu is with the Department of CSE, Texas A&M University, College
Station, TX 77843 USA (e-mail: guofei@cse.tamu.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3062621, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3062621

Index Terms— Programmable switch, Distributed Denial-of-
Service (DDoS) attacks.

I. INTRODUCTION

D ISTRIBUTED Denial-of-Service (DDoS) attacks have
been a longstanding threat. They have become even

more so as an increasing number of vulnerable Internet of
Things (IoT) devices are connected online. Over the past a few
years, there has been a dramatic increase in the scale and diver-
sity of DDoS attacks, many of which have frequently made
the headlines [2]–[5]. Recent surveys report 400,000 DDoS
attacks every month [6], with peak volume reaching Tbps [7].
These attacks are also evolving quickly, leveraging new or
mixed attack vectors [8]–[11].

Today’s defenses against large-scale DDoS attacks, how-
ever, have not caught up. One of the most widely adopted
DDoS defenses is using a traffic scrubbing center, where
a range of defense mechanisms are deployed near the des-
tinations to mitigate DDoS “as-a-service” [12]. However,
most of the devices deployed in the scrubbing centers
are expensive and proprietary hardware appliances, i.e.,
middleboxes [13]–[15]. Although these middleboxes deliver
high performance, they tend to be inflexible in terms of func-
tionality, capacity, and placement locations [16]. As a result,
whenever a new attack vector emerges, its corresponding
defense would require an upgrade of the middleboxes, which
in turn requires rounds of negotiations between customers and
vendors. In addition to this lack of agility, hardware upgrades
also incur significant economic costs.

Recent trends in networking—Software Defined Network-
ing (SDN) and Network Function Virtualization (NFV)—can
mitigate some concerns above by employing software-based
network programmability. For instance, Bohatei [16] lever-
ages NFV to elastically scale the number of defense virtual
machines (VMs) based on attack composition, and it adopts
SDN to steer the suspicious traffic to proper VMs. It also
designs several efficient resource management mechanisms
for scalability, responsiveness, and attack resilience. Despite
these benefits, server-based packet processing incurs additional
latency overheads and defense costs. These problems are
deeply rooted in the nature of software-based platforms, where
packets are processed on general-purpose CPUs rather than
specialized network hardware customized to sustain Tbps
traffic.

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7939-7367
https://orcid.org/0000-0001-5274-5512
https://orcid.org/0000-0001-8380-9136
https://orcid.org/0000-0002-4847-4585
https://orcid.org/0000-0001-8710-247X
https://orcid.org/0000-0001-8776-8730

1510 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

An ideal DDoS traffic scrubbing service should have low
operational and capital cost; and at the same time, it should
have high performance in packet processing and enable agile
deployment of new defenses. These requirements are becom-
ing more and more urgent with the increasing number of
IoT botnets [17], [18], new variants of DDoS attacks [19],
[20], and the stringent latency demands in today’s network
services [21], [22]. We observe that the emerging program-
mable switches [23] developed in the latest networking tech-
nology can provide an exciting opportunity to bridge this
gap. First off, since programmable switches provide several
orders of magnitude higher throughput than highly-optimized
packet processing software [24], [25], a single switch could
potentially replace hundreds of servers, significantly reduc-
ing per-capacity capital cost and operational expense. More-
over, such switches support stateful packet processing using
domain-specific languages (e.g., P4 [26]), which can process
packets with user-defined logic at terabit line rate in the switch
pipeline. These potential benefits are particularly valuable for
DDoS defense.

While programmable switches are a promising candidate
for DDoS defense, there are three challenges that we must
address. First, we desire a high-level abstraction that can
capture a wide range of DDoS defense policies. However,
different DDoS attacks exploit different protocol- and system-
vulnerabilities, and they are trying constantly to evade the
defense mechanisms. As a result, the corresponding DDoS
defenses should not only be rather heterogeneous to handle
different types of attacks, but also be robust enough to avoid
any attack evasion. Such requirements make it challenging
to describe the defense policies uniformly. Second, although
programmable switches provide several orders of magnitude
higher throughput and lower latency than commodity servers,
they only have restrictive computational models and limited
on-chip resources; this makes it challenging to implement
sophisticated DDoS defenses (e.g., puzzle for HTTP Flood),
and we also need to work within the switch resource limi-
tations. Third, DDoS attacks are dynamic in terms of attack
types and composition. This raises another requirement that
the defense should be adaptive to attack dynamics. It is
challenging to achieve this with high efficiency (i.e., switch
resource utilization) and strong correctness guarantees (i.e.,
without interrupting legitimate flows).

To address the challenges above, in this article, we pro-
pose POSEIDON, a performant, cost-efficient and agile DDoS
defense system with programmable switches. First, we pro-
vide an intuitive and robust policy abstraction for expressing
defense policies, which can capture a wide range of DDoS
defenses concisely. Second, we partition the defense primi-
tives to run on programmable switches—and when necessary,
on commodity servers—according to their properties, and
map the high-level policies to the defense resources with
an optimized orchestration mechanism. Third, we develop
an effective runtime management mechanism to reconfigure
POSEIDON for dynamic defense without interrupting legit-
imate flows. We stress that POSEIDON is not intended to
provide a new algorithmic or theoretical contribution to DDoS
defense, but rather to provide a practical and system-level

solution leveraging the emerging programmable switches,
which could potentially become a new platform for future
DDoS defenses. Our implementation and evaluation demon-
strate that POSEIDON is able to potentially defend against
∼Tbps attack traffic, capture a range of defense policies within
tens of lines of code, adapt to policy changes in seconds, and
handle dynamic attacks with negligible overheads.

In summary, we make the following contributions:
• We analyze the challenges of the current DDoS defense

practices, identify new opportunities with programmable
switches (§II), and discuss the design challenges in inte-
grating programmable switches into the existing DDoS
defense framework (§III).

• We provide an intuitive and robust abstraction to express
DDoS defense policies, shielding the underlying hard-
ware complexities from programmers (§IV).

• We develop an optimized resource orchestration mech-
anism to map the high-level policy primitives to the
underlying hardware resources (§V).

• We develop a runtime management mechanism that can
adapt to dynamic attacks with high resource utilization
efficiency and strong correctness guarantees for legitimate
flows (§VI).

• We implement a prototype of POSEIDON, and conduct
extensive experiments to demonstrate the advantages of
POSEIDON (§VII, §VIII).

Finally, we discuss several practical issues (§IX), summarize
related work (§X), and then conclude the article (§XI).

II. MOTIVATION AND OBSERVATION

In this section, we further motivate the need for advanced
DDoS defenses, and describe why the emergence of program-
mable switches is a promising enabler of new DDoS defense
systems.

A. Challenges in DDoS Defense

To defend against DDoS attacks, one of the most deployed
defenses is using a traffic scrubbing center, where a large
cluster of commodity servers or proprietary middleboxes are
organized to filter the malicious traffic. Two essential require-
ments are defense cost and agility. Unfortunately, today’s
defense systems are lacking in both regards.

First, DDoS defense should be cost-efficient. As DDoS
attacks are challenging to eliminate without making funda-
mental changes to the Internet architecture, there will always
be a “cat-and-mouse” game between attackers and victims.
If one side could obtain more resources (attack traffic vs.
defense devices) with lower cost, that side will win out.
As a well-known fact in the operational security community,
the costs for DDoS attackers and victims are determined by
two separate markets, namely, botnet markets and defense
markets [27]. As a result, it is important to increase the
difficulty to obtain botnets and to reduce the costs to deploy
defense countermeasures. Unfortunately, with the massive
usage of vulnerable IoT devices and the emergence of various
powerful botnets (e.g., Mirai [17], [28]), this balance is shifted
towards attackers quickly and the Internet is stricken by

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ENABLING PERFORMANT, FLEXIBLE AND COST-EFFICIENT DDoS DEFENSE WITH PROGRAMMABLE SWITCHES 1511

storms of larger and larger DDoS attacks more and more
frequently [18]–[20]. Although we can scale up the scrubbing
capacity by adding more servers or proprietary middleboxes,
doing so raises the capital cost and operational complexity,
which is not symmetric to the rapid growth of attack traffic
nowadays.

Second, DDoS defense should be agile in terms of new
defense deployment and traffic scrubbing procedure. As dis-
cussed above, DDoS attacks are still evolving rapidly, and new
attack vectors are emerging constantly [8]–[11]. To address
a new attack vector, hardware upgrades are necessary. How-
ever, proprietary middleboxes are extremely hard to upgrade,
and even adding simple functionality such as modifying the
statistic granularity is difficult to achieve without vendor
support [14], [15]. Such inflexibility to deploy new defense
mechanisms hinders our ability to quickly respond to new
variants of DDoS attacks. To make matters worse, today’s
vendors usually deploy all known defense countermeasures
into middleboxes to cope with attack dynamics [14], [15],
which results in substantial processing resource waste and
further raises the capital cost. Since it is unlikely to see
all attacks simultaneously, most of the hardware resources
are left unused during DDoS defense. Server-based solutions
provide high programmability to solve the problem above, but
this comes with high latency, high jitter and poor isolation
in packet processing. Software processing adds a latency of
50us to 1ms when handling as little as 100K packets per
second [29], which is unacceptable for many latency-sensitive
services [21], [22] common in today’s data centers. When
software experiences a flash crowd, legitimate traffic served by
the server also experiences increased delays, even unexpected
packet drops [24], [29], which makes scrubbing procedure
challenging even for latency-insensitive services.

B. Opportunities of Programmable Switches

Current trends in SDN have extended the network
programmability to the data plane through programmable
switching ASICs (Application-Specific Integrated Circuits)
and domain-specific languages (e.g., P4 [26]). The program-
mable switching ASICs and P4 language make it possible to
implement custom terabit packet processing devices, as long
as the defined logics can be fitted into the match-action
model of switching ASICs. Given the performance and flexi-
bility, we highlight some new opportunities that programmable
switches bring for DDoS defenses:
Lower unit capital cost. The cost benefit when introduc-
ing programmable switches into DDoS defense framework
includes two parts: equipment cost (in dollars) and power
consumption (in Watts). As shown in TABLE I, according to
our investigation, a typical 48Gbps DDoS defense middlebox
costs about $102,550 and uses 600 Watts [14], a common
server equipped with a 40Gbps NIC costs about $4,400 in
2018 and uses 600 Watts under full load, and a 3.3Tbps
Barefoot Tofino switch costs about $10,500 and has a power
consumption of around 512 Watts [30]. From this table, we can
see that compared with the other two hardware devices, packet
processing with programmable switches saves dollars by tens

TABLE I

CAPITAL COST FOR DIFFERENT DEFENSE HARDWARE

of to hundreds of times, which shows their potentials to reduce
the cost for attack traffic scrubbing.
Flexibility to support future attacks. As newer and larger
DDoS attacks emerge, enterprises today have to frequently
purchase more capable hardware appliances and integrate them
into the defense infrastructure. Proprietary middleboxes cannot
easily support new attacks because of their limited programma-
bility. Software-based defenses (e.g., Bohatei [16]) are much
more programmable, but they can only handle lower-speed
traffic. In contrast, programmable switch can not only be
programmed with domain-specific languages like P4 to enable
new defenses, but also process packets at high speed. These
features provide unprecedented flexibility to defend against
advanced DDoS attacks.
High packet processing performance. Switching ASICs are
specifically designed and optimized for packet processing at
line rate. They can achieve several orders of magnitude higher
throughput and lower latency compared with highly-optimized
software solutions [31]. Also, switching ASICs can pro-
vide strong performance isolation [24], which is essential
for avoiding increased delays or packet drops for legitimate
traffic during DDoS attacks. Other alternatives, such as Smart
Network Interface Cards (NICs), Field Programmable Gate
Arrays (FPGA) and Network Processing Units (NPUs) cannot
match the performance of switching ASICs [25], [31], [32].
Such performance characteristics make switching ASICs a
desirable platform for high-throughput and low-latency DDoS
defenses, as the resulting defenses are a good match for
the requirements of latency-sensitive services in today’s data
centers.

III. SYSTEM OVERVIEW

In this section, we describe our defense scenario, workflow,
and design challenges in more detail.

A. Problem Scope

Deployment Scenario: Our scenario focuses on the DDoS
defense in traffic scrubbing centers, where an ISP or cloud net-
work provides DDoS defenses “as-a-service” for its customers,
or builds its own traffic scrubbing center to mitigate DDoS
attacks. As real-world examples, today’s ISPs have already
started to provide such value-added commercial services (e.g.,
AT&T [33]) to customers, and numerous cloud networks
also have such scrubbing centers (e.g., Google, Alibaba, and
Tencent [34], [35]). Of course, a customer network could also
build a scrubbing center of its own. If desired, the ISP or cloud

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

1512 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

network could also allow its customers to deploy POSEIDON

DDoS defense policies for their own traffic (e.g., the customer
would monitor and scrub potential attack traffic to itself [36]).
The scenario we focus on is complementary to CDN-based
DDoS defenses, where users can offload their content to CDNs
(Content Delivery Networks), and it can indeed co-exist with
other defenses. For instances, before the attack traffic arrives
at CDNs, it may be filtered out by some scrubbing center that
sits in front of them.
Threat Model: We focus on volumetric DDoS attacks against
victim destinations. We assume that attackers have a fixed
budget to buy or rent a large number of bots in a botnet
(e.g., a collection of compromised IoT devices), and aim
to exhaust the bandwidth or computation resources of the
victims [37], [38]. Attackers can choose a composition from
a set of candidate DDoS attacks (e.g., Smurf attacks, SYN
flood attacks, ICMP/UDP flood attacks, Elephant flow attacks,
DNS reflection attacks, NTP amplification attacks, HTTP flood
attacks, Slowloris attacks, and etc.) and launch multiple DDoS
attacks simultaneously. During the attack, attackers can change
the types and the mix of attacks dynamically. Other types
of DDoS attacks (e.g., pulsing attacks [39] and crossfire
attacks [8]) that require cooperation of distributed switches,
are out-of-scope for this article.

B. POSEIDON Workflow and Challenges

We illustrate the general workflow of a classic DDoS
defense, i.e., attack detection, traffic steering, policy decla-
ration, and attack mitigation. First, the ISP or cloud network
applies some in-band or out-of-band anomaly detection tech-
niques to determine whether a customer is under attacks [40],
[41]. The detection algorithms are out-of-scope for this arti-
cle. We assume that the detection procedure will produce
some coarse-grained characterizations of the suspicious traffic,
i.e., the attack types, the estimated volume of each type of
suspicious traffic, and the suspicious IP prefixes. Alternatively,
such information could also be obtained from the victim
customers. Note that this is a common practice for many
ISPs today [16]. In our scenarios, the estimation for attack
traffic does not need to be very precise, and it is only used
to help steer the suspicious traffic, to use the right defense
policies, and to allocate the switch resources. The monitor
primitives in the POSEIDON system will further obtain more
fine-grained detection results for concrete attack responses.
Second, the suspicious traffic is steered to the traffic scrubbing
center, and operators specify the needed POSEIDON policies
containing the estimated information to mitigate the attack.
Third, POSEIDON orchestrates and manages the resource of
the scrubbing center, including programmable switches and
commodity servers, to coordinate them together for attack
mitigation.

Fig. 1 shows this workflow. POSEIDON takes the DDoS
defense policies as input, and maps the policies to the available
pool of resources (i.e., switches and servers). Users of POSEI-
DON do not need to understand the details of the underlying
resources; instead, they only need to focus on choosing the
set of primitives for attack mitigation. In order to achieve

Fig. 1. The overall architecture of POSEIDON.

this goal, POSEIDON needs to address the following three
challenges.
Intuitive, robust policy representation (§IV): Although
operators could directly write the defense programs in
P4 or C/C++, this procedure would be rather low-level and
error-prone [42], [43], which make a high-level defense policy
representation desirable and urgent. However, different DDoS
attacks target different protocol- and system-vulnerabilities,
so the defenses should necessarily differ in their working
mechanisms. Besides, these attacks are constantly struggling to
make their DDoS traffic bypass the deployed defense policy to
reach victims, which requires our defense representation robust
enough to avoid any attack evasion. The unique requirements
in DDoS defense mechanisms make it challenging to design
an intuitive and robust policy representation to capture the
defense policies.
Optimized, efficient defense orchestration (§V): Although
programmable switches could achieve several orders of mag-
nitude higher throughput and lower latency than commodity
servers, they only have limited on-chip resources and restric-
tive computational models [23], [30], [43]–[45]. Therefore,
it is necessary for us to utilize the resources on the switching
ASICs as efficiently as possible. Moreover, some defenses may
even go beyond the computational model of the switching
ASICs, which is impossible to be fully implemented on the
switches. The aforementioned points make it challenging to
fully explore the potential of switching ASICs to mitigate
multi-vectored DDoS attacks.
Handling dynamic attacks at runtime (§VI): Advanced
DDoS attacks are usually dynamic, where attackers change its
attack composition and the volume of each attack type over
time. This requires that POSEIDON should be adaptive to the
attack dynamics, i.e., POSEIDON should change the deployed
defenses based on the attacks. However, some DDoS defense
mechanisms (e.g., SYN proxy) are stateful, and naïvely recom-
piling the P4 programs for deployment would lead to state loss
and flow interruption. A strawman solution is to update the
defenses when all flow states are no longer needed. However,
since some flows could be long-lived, it may be difficult
to identify a single point in time for this update. During
this unbound period, the precious resources on programmable
switches cannot be used to scrub the attack traffic, which is a
waste of precious and high-density defense resources. Achiev-
ing an efficient (i.e., switch ASICs utilization) and correct
(i.e., without legitimate flow interruption) DDoS defense with
programmable switching ASICs is another challenge.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ENABLING PERFORMANT, FLEXIBLE AND COST-EFFICIENT DDoS DEFENSE WITH PROGRAMMABLE SWITCHES 1513

Fig. 2. The syntax for expressing POSEIDON defense policies. � describes
calculative operators and ◦ describes logical operators.

IV. EXPRESSING DEFENSE POLICIES

POSEIDON presents a high-level interface to programmers
for developing DDoS defense policies. Instead of exposing
low-level interfaces in P4 or C/C++, POSEIDON modularizes
a set of defense primitives that can be shared across and
composed by different policies. Users can also extend this set
of primitives easily.

A. The POSEIDON Policy Language

At first glance, DDoS attacks may seem very different in
nature, as they exploit different attack vectors and require
different defense strategies. However, we observe that there
are key components common to many volumetric attacks—
detecting an attack typically requires a set of tests on packet
headers or flow states, and responding to a detected attack
eventually boils down to specific actions taken on network
packets. Therefore, it should be feasible to capture these
common components in a high-level abstraction.

In particular, we believe that the Frenetic (NetCore) family
of SDN programming languages [42], [46], [47] provides
a good starting point due to their high modularity [46].
A policy in these languages consists of a series of match/action
statements over a selected set of packet headers. Since these
languages primarily target at specifying packet forwarding
behaviors, we introduce several customizations for DDoS
defense based on a prototype language named NetCore [46].
A summary of POSEIDON’s syntax is shown in Fig. 2.

Similar as NetCore, expressions could be formed over
value (v), header fields (h) or monitor instances (M (�v)). Multi-
ple expressions can also be composed with different calculative
operators together (E � E). Predicates are constructed over
expressions with diverse logical operators (E ◦ E), which are
used by policies to perform tests and decide on actions. There
are also differences from NetCore, however. We allow the defi-
nition of attack detection logic using monitors abstracted from
the Finite State Machine (FSM), which collect stateful contexts
for flow state transitions and use them to distinguish between
normal flows and specific attacks. The defense actions also go
beyond forwarding packets to switch ports—they might, for
instance, record needed states across packets (e.g., for SYN
flooding defense), invoke more sophisticated actions supported

in software (e.g., client puzzles), or combine multiple actions
together for mixed-vector attacks. In the following discussion,
we mainly illustrate several distinct primitives from NetCore.

First, the detection of DDoS attacks typically relies on
flow-level states (e.g., traffic statistics) instead of per-packet
information. Thus, we introduce our monitor primitive. Our
previous work [1] employs a statistics-based monitor prim-
itive, which is effective for some stateless protocols based
DDoS attacks, e.g., counting the number of UDP packets for
each source IP address every 5 seconds. However, it could
be easily evaded by attackers with stateful protocols based
DDoS traffic. To illustrate this, we take the SYN flood defense
policy as an example to demonstrate its limitations. To defend
SYN flood, our previous work [1] proposes two monitors
to count SYN packets and ACK packets separately for each
source address. The policy determines whether SYN flood
happens by comparing the number of SYN packets and ACK
packets each IP address has sent. Nevertheless, attackers can
easily evade such a policy by sending an arbitrary ACK
packet following the SYN packet. This indicates we need a
more powerful abstraction for the monitor to guarantee the
robustness of defense policies. We observe that Finite State
Machine (FSM) abstraction [48] can capture these stateful
packet processing behaviors effectively, which can also be
intuitively represented with high-level transition tables and be
efficiently implemented within programmable switches. As a
result, we propose our FSM-based monitor primitive. Before
defining a monitor, the underlying FSM template should be
constructed first with fsm(�s,�c,�r). This FSM template has
state list �s, flow context list �c and argument list �r. Flow
contexts store necessary states for each flow and are often
used along with arguments in �r to decide state transitions
of FSM. The transition table of FSM can be expressed with
an intrinsic function add_trans(src,P , dst,�a). This function
specifies a transition from state src to dst if predicate P
is satisfied, and simultaneously the actions �a are conducted.
Otherwise, the default transition is to stay at the current state.
POSEIDON has constructed several typical FSM templates
(i.e., hshake_fsm, cnt_fsm and agg_fsm) and provides them to
developers as a POSEIDON library. A monitor can be declared
in the form of M ::= F (�h, timeout,�r), by instantiating the
specific FSM template with three parameters. �h specifies the
granularity to identify a flow and each flow is assigned a
respective FSM instance. timeout denotes the refresh time
of FSM, which makes the states and flow contexts in each
FSM instance have periodic statistical characteristics. The last
parameter �r is a list of arguments passed to the FSM template,
like parameters of C++ class constructor. After instantiating
the monitor, operators can access the state of the FSM indexed
by certain values.

Second, primitive actions are central building blocks for
DDoS response: an action receives a set of packets and
conducts the corresponding processing for these packets.
We observe that although DDoS defenses are heterogeneous
for different attacks, the defense actions have many similari-
ties, and there is only a limited set of basic building blocks.
Once a malicious action is detected, some defense mechanisms
simply drop the packets with a specific predicate (drop). While

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

1514 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

Fig. 3. TCP three-way handshake FSM template.

for benign identifiers (e.g., source IP address), most defense
mechanisms let their packets pass (pass). Rate limiter (rlimit)
rate-limits the packets that satisfy certain conditions. And for
most TCP-related DDoS attacks, SYN proxy (sproxy) is a pow-
erful defense element, and puzzle is effective for HTTP-based
flood attacks. Meanwhile, for many attacks, operators may
have the need to log certain packets for forensic use, so we
also introduce a log primitive. Importantly, the set of building
blocks presented here is not meant to be an exhaustive list—
programmers can easily add new ones to the library of defense
primitives using our policy language (more discussion in §IX).

Finally, for policy declaration, POSEIDON is very similar to
NetCore/NetKAT family of languages, which allows branches
(if . . . else . . .) and policy composition (|). Users can include
conditional branches that invoke different defense primitives
based on certain conditions. They can also compose multiple
policies together using the composition operator |. We will
illustrate these primitives with concrete examples in the next
subsection.

B. Policies by Examples

Before giving concretes defense policies, we first give two
examples on constructing typical FSM templates. Subsequent
policies will demonstrate this abstraction is robust for flow
monitoring.
TCP three-way handshake FSM. TCP protocol requires
handshaking including three separate steps to establish a
normal connection. To describe such a process, we construct
a three-way handshake FSM as shown in Fig. 3. There are
three flow contexts used in this FSM: the client IP address
of the flow (cip), the sequence number of last packet (seq)
and the counter of abnormal packets (abcnt). The first four
transitions (line 2–18) specify three-way handshake process
and state 3 represents the connection is established normally.
The last two transitions (line 19–23) describe how to process
abnormal packets not following handshaking and state 4 is an
abnormal state where the number of abnormal packets exceed
the given argument T.1

1The parameters in this article, such as T, should be set by operators based
on the defense scenario, which is out-of-scope for this article.

Fig. 4. Counter FSM template.

Fig. 5. SYN flood defense.

Counter FSM. Our previous work [1] has demonstrated
counter is an efficient primitive to filter some volumetric
DDoS attacks. Analogously, POSEIDON also provides a similar
primitive based on our FSM abstraction. Fig. 4 shows how
to construct such a counter template. Counter FSM template
only contains two states and one counter as the flow context.
This FSM will stays in state 0 to count packets satisfying
predicate P (argument) as long as the counter is not larger than
the argument T (line 2–4). Obviously, state 1 signifies that the
counter has exceeded the user-defined threshold T (line 5–10).

Next, we describe DDoS defense policies for six typi-
cal DDoS attacks, where the first two are adapted from
Bohatei [16], and the third is a new policy supported by
POSEIDON. Please refer to the Appendix in our supplementary
materials for the other three defense examples. Our goal here
is not to develop new defense mechanisms, but to illustrate
the flexibility and simplicity of POSEIDON policy language
in dealing with a diverse set of DDoS attacks. Once the
characteristics of one attack are identified, operators can
easily and simply express the defense policy for the attack.
It is worth mentioning that our primitives do not have to
be purely implemented in the programmable switches, while
some sophisticated primitives may need the assistance of the
servers.
SYN flood attack. As shown in Fig. 5, we first not only
track the handshake process for each bi-directional TCP flow
but also counting SYNs for each source IP every 5 seconds.
We choose T = 3 when instantiating the handshake FSM
template to tolerate possible TCP retransmission. Based on
both states of two corresponding FSM instances, if the flow has
more than 3 abnormal packets not following TCP handshaking
(state 4 in hshake_fsm), we mark its packets as attacks and
drop them (line 6-8). If an IP has sent much more than Th
SYNs (state 1 in cnt_fsm), we mark it as suspicious and
send packets to a sproxy defense module for further inspection
(line 9 and line 10). Otherwise, we mark the packet as benign
and let it pass (line 11, line 12).

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ENABLING PERFORMANT, FLEXIBLE AND COST-EFFICIENT DDoS DEFENSE WITH PROGRAMMABLE SWITCHES 1515

Fig. 6. DNS amplification defense.

Fig. 7. HTTP flood defense.

DNS amplification. In DNS amplification attacks, attackers
use numerous spoofed protected servers’ IPs to request many
DNS queries that result in a large number of answers to over-
whelm the protected servers’ bandwidth. To defend against
this kind of attacks, as shown in Fig. 6, we first track all the
protected servers’ DNS queries (line 1–3). Only the incoming
DNS replies which have been queried by protected servers
(state 1 in cnt_fsm) within an hour are allowed to enter the
network (lines 3–7).
HTTP flood attack. In HTTP flood attacks, each attacker
generates a large number of legitimate HTTP requests and
sends them to victim servers, which can easily overload the
web servers and make the service unavailable. To mitigate
this kind of attack, as illustrated in Fig. 7, a simple approach
is to track the number of HTTP requests for each source IP
(line 1). If the number of client sessions exceeds a threshold
(Th) during the previous period (state 1 in cnt_fsm), adopt the
puzzle mechanism for this source IP (lines 3–4). Otherwise,
forward the packets from this source IP as normal (lines 5–6).
Note that the puzzle defense cannot be implemented within
the programmable switch. Rather, the switch redirects the
flow to an HTTP server that implements the defense (e.g.,
a CAPTCHA). We discuss puzzle defense further in §V-A.

From these examples and programs, we can see that POSEI-
DON policy language is easy to understand and expressive
enough to convey operators’ defense intents.

V. ORCHESTRATING THE DEFENSE

POSEIDON has a resource orchestration component that
analyzes each primitive in a given policy, and partitions the
needed functions across the switches and the servers for
effective defense. At a high level, POSEIDON first constructs a
directed graph of defense primitives, and computes an optimal
placement of the graph by solving several sets of constraints.

A. Analysis of Defense Primitives

As described before, POSEIDON has three classes of defense
primitives: a) monitors collect stateful information over the
network traffic (e.g., lines 1–4 in Fig. 5), b) actions specify the
defense decisions taken on a particular kind of packets (e.g.,
lines 8, 10, and 12 in Fig. 5), and c) branches express the
control flow of the defense (e.g., lines 6, 9, and 11 in Fig. 5).

Before delving into the details about primitive placement,
we describe how POSEIDON supports each kind of primitives,
and how much resource each primitive requires on the switch
and/or server. TABLE II contains a summary.
Monitors. The detection of DDoS attacks relies on collecting
flow-level states (e.g., traffic statistics) and conduct stateful
processing over packets headers. The monitors in POSEIDON

can be fully implemented in the switches for these purposes.
Each monitor need to store both current FSM state and flow
contexts for each flow (i.e., FSM instance) and POSEIDON

organizes them into the FSM table. To enable the state
transition in the FSM, we first read these two types of data
from the FSM table, and then write the new data back to the
corresponding FSM table entry if the predicate is satisfied.
Under the hood, POSEIDON implements the FSM table using
cuckoo hash tables [48], [49], which are well-known resource-
efficient data structures and support higher load factors. How-
ever, inserting an entry into the cuckoo hash table may
require multiple movement operations when there is hash
collisions [48], which cannot be directly implemented with
line-rate switches. To solve this issue, POSEIDON extends the
hash table with a small stash memory on the switch to hold the
new entries waiting for insertion and involves the control plane
to handle the collision [48], [50]. When subsequent packets of
the new flow arrive at the switch, they can access entries stored
in the stash directly. At the same time, the control plane will
resolve collisions and moving collided entries from the stash
to the hash table. So that both query and insertion to the hash
table can be performed at line rate. Besides, the stash does
not need to be large, and 8-entry stash memory is proved to
be enough for large network traces [48].

Specially, one monitor requires two stages to execute the
FSM on switches, one for generating four hash keys to address
the four-choice cuckoo hash table and determining the actual
flow index, and another for performing the FSM transition
logics, including reading and updating the corresponding entry
of the FSM table with the flow index. To achieve the timeout
of monitors, we assign one timestamp for each entry in the
FSM table, and make the control plane scan these timestamps
periodically to refresh FSM instances timed out or to remove
inactive FSM instances.
Actions. POSEIDON has a set of defense primitives that take
actions on network traffic based on the statistical results.
POSEIDON’s framework is general enough to capture a range
of defense actions, including a) the class of defenses that can
be supported entirely in the switch (“switch only”), b) the
class of defenses that require some level of server involvement
(“switch assisted”), and c) the class of defenses that needs
to run entirely on the servers (“server only”). Defenses in
switch-only class can fit into the programming model of
the switching ASIC. The current version of POSEIDON sup-
ports drop, pass—which can be mapped to the corresponding
match-action table entries easily, as well as rlimit and sproxy—
which are more complex and require more resources in the
switch pipeline; this set can be easily extended to include more
defenses.

Switch-assisted defenses need to be carefully partitioned
into two separate components: a switch component that is

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

1516 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

TABLE II

IMPLEMENTATION DETAILS AND RESOURCE UTILIZATION OF POSEIDON PRIMITIVES

offloaded to hardware, and a server component that runs in
software. POSEIDON aims to carve out as much as logic
possible for hardware offloading, since this would translate to
higher performance. For instance, consider the log primitive
with three steps. It first selects the kind of traffic to be logged,
then groups the packets of interest based on certain keys
(e.g., flow IDs), and finally aggregates the results for logging.
Similar as Marple [51] and *Flow [44], POSEIDON uses
match-action tables to implement the select step, uses stateful
registers to group the results, and performs the aggregation
step on servers since it involves more complex logic. In this
example, the servers only need to do minimal amount of
work, since the switch component has filtered out most of
the irrelevant data.

Server-only defenses require sophisticated actions that go
beyond the capability of the switching ASIC, such as those that
require complex arithmetic operations, loops, or application-
layer processing. Offloading these operations to the switch
is not possible at least with today’s switching hardware.
A representative case is puzzle [52]–[54], which is often
used to defend against HTTP-based flood. Puzzle forces each
client to solve a cryptographic puzzle (e.g., graphical puzzles)
for each request before the server provides its resources,
thereby imposing a large computational task on attackers bent
on generating legitimate service requests to consume server
resources. We use CAPTCHA as an implementation of puzzle.
Policy declaration. First, DDoS defense usually takes dif-
ferent actions for different types of traffic, and this can be
supported using branches to specify the control flow. An
if . . . else . . . branch could be implemented as a tag-based
match-action table, which classifies incoming packets that
match different predicates using different tags. For example,
in Fig. 5, we generate different tags for packets that satisfy
different predicates, e.g., tags 1, 2, and 3 for the predicates
in lines 4, 6, and 8, respectively. Each branch is then mapped
into a tag-based match-action entry, and the following code
block would identify the packets based on their tags. Second,
composition operator | are very useful when operators want
to compose multiple policies, which allows operators to apply

Fig. 8. SYN flood defense graph.

different polices to different packet group together. Currently,
if two policies have different actions for the same packet,
we simply adopt the stricter one. For example, if policy
1 would like to drop the incoming packet while policy 2 lets
it pass, we will drop it finally.
Flow affinity. In addition, some defenses need to be state-
ful and have bidirectional semantics. For example, sproxy
requires that the inbound and outbound traffic of the same
flow are always steered to the same instance; similarly, DNS
requests and responses should also be processed by the same
instance. To achieve this, we design our hash function as
hash1(pkt.src) + hash2(pkt.dst), in which way exchanging
source and destination fields does not affect the final hash
value.

B. Placing Defense Primitives

Next, we describe the algorithm that POSEIDON uses to
place the various defense primitives to the network.

Similar as [43], [55], POSEIDON extracts a graph structure
from the defense policy, where the nodes are the defense
primitives and the edges represent the traffic flow. Note,
however, each defense primitive has self-contained state, and
for modularity, it does not expose internal states to other
primitives explicitly. Therefore, POSEIDON uses a topological
sort to transform the graph into an ordered list of primitives.
For instance, as shown in Fig. 8, the graph for syn flood
defense could be transformed into a list of nodes 1© 2© 3© 4© 5©.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ENABLING PERFORMANT, FLEXIBLE AND COST-EFFICIENT DDoS DEFENSE WITH PROGRAMMABLE SWITCHES 1517

When there are multiple defenses that need to be deployed in
conjunction, POSEIDON would obtain a list of primitives for
each. It then computes the resource usage of the primitives
based on the analysis in §V-A, and uses the information for
placement.

POSEIDON then places the lists of nodes into the network,
including programmable switches and commodity servers.
Since programmable switches can achieve orders of magnitude
higher performance, our goal for the placement is to maximize
the amount of processing offloaded to the switches. Of course,
the resource limitations of the switches pose constraints to
our problem, most prominently in terms of the number of
stages in a switch, and the amount of SRAM (for registers)
and stateful ALUs per stage. Our placement algorithm takes
these constraints into account while optimizing for maximal
offloading.

To reduce the switch-server traffic transfer, the placement
algorithm partitions each list once and only once—the first part
is offloaded to the switch and the second to the servers. To
mitigate the resource limitations of a single switch, POSEIDON

can also leverage resources from multiple switches for process-
ing. Concretely, several switches can be organized together
sequentially, which can provide more processing stages and
memory resources as traffic flows through. This effectively
abstracts a path that consists of multiple switches into a much
larger switch—for instance, the number of usable stages has
increased to S =

∑
switch Numstage. As future work, we are

also planning to support parallelism across multiple paths. The
sequential and parallel placement can also be used together to
achieve even higher performance. POSEIDON then formulates
the placement problem as an Integer Linear Program (ILP).
Input. Assume that POSEIDON needs to place P defense
programs, and that each program has Np nodes. We further
assume that the estimated volume of each type of attacks is
available to POSEIDON with a certain expected error probabil-
ity. Using the above information, we can compute the switch
resources each defense primitive would require. We use the
following notations for the various types of resources: for the
n-th node of program p, it uses a stage count of STAGEp,n,
SRAM in the tth stage SRAMp,n,t, and the stateful ALUs
in the tth stage ACTIONp,n,t (1 ≤ t ≤ STAGEp,n).
Furthermore, the amount of traffic after passing through this
node is Tp,n. Every node in the processing would reduce the
traffic volume, so that the amount of traffic received by the
servers would be minimized.
Output. We define Xj

p,n = 1 if and only if the n-th node of the
p-th program starts at the j-th stage of the “abstracted” switch
(i.e., a path of switches), otherwise Xj

p,n = 0. So for each
program P, the last node on the switch would be LastNp =∑

J

∑
N Xj

p,n. As a result, our objective can be written as

max
∑

P

n=LastNp∑

n=1

Tp,n (1)

Constraints. There are several types of constraints that we
need to consider.

Register memory per stage. For each stage, the amount of
SRAM allocated for packet processing cannot exceed SRAM .

Thus we have

∀j, t,
∑

P

∑

Np

SRAMp,n,t · Xj
p,n ≤ SRAM (2)

Number of stateful ALUs per stage. Similarly, for each
stage, the total number of stateful ALUs allocated for packet
processing cannot exceed ACTION . Thus we have

∀j, t,
∑

P

∑

Np

ACTIONp,n,t · Xj
p,n ≤ ACTION (3)

Number of stages. The total number of stages for all defense
programs cannot exceed the upper limit of stage count S. Here,
we use Zp,n to denote the start stage of node n for program p.
Zp,n and Xj

p,n are related: if Xj
p,n = 1, then Zp,n = j. Then

we have

∀p, n, Zp,n + STAGEp,n ≤ S (4)

Node ordering. The placement should respect the ordering
of the nodes, i.e., for each program P , if the node n1 precedes
node n2, then the start stage of node n1 should appear earlier
than the start stage of node n2 subtracting STAGEp,n1. Then
we have

∀p, if n1 < n2, Zp,n1 + STAGEp,n1 < Zp,n2 (5)

Using the above constraints, we can solve the 0-1 Integer
Linear Programming (ILP) problem and obtain the optimal
placement using existing optimization toolboxes [56]. The
result would specify which primitives should be placed in the
switch, as well as the amount of allocated resources to each
primitive.

VI. HANDLING DYNAMIC ATTACKS

Next, we discuss how POSEIDON handles dynamic attacks
at runtime. To ensure defense correctness, we need to replicate
state in the programmable switches and use server memory
as a temporary store. When a switch is being reconfigured
with a new P4 program, traffic is steered to the relevant
servers that contain defense state for processing. To achieve
this, POSEIDON uses a central controller to coordinate the
switches and the servers (see Fig. 10). During a policy update,
the controller generates a new defense strategy, i.e., deploying
a new P4 program to the switches and a new configuration
for the servers. The new P4 program would be loaded to
the switches directly, replacing the previous defense strategy.
During this update, flows are sent to the relevant servers for
processing. The servers always implement logic for all types
of defenses, but the switch-only defenses are never activated
unless in this transition state. In order to replicate state at
runtime, there are several issues that need to be solved for
efficient and consistent replication.
States requiring replication. An intuitive approach is to
identify all states using program analysis techniques [57],
[58] (e.g., the registers in P4), and replicate these states
to servers when they are modified. However, on one hand,
some states can be automatically recovered after the traffic is
steered to the servers, which means replicating these states is
not necessary. On the other hand, some states are no longer

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

1518 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

Fig. 9. Format of the state replication packets.

useful when an attack finishes, such as monitor statistics,
so they do not need to be replicated. Our principle here is
to identify the states which will still take effect for legitimate
traffic even when attacks finish, with the goal of ensuring
correctness for legitimate flows. In the current version of
our primitives, sproxy is a good example. It maintains the
difference between sequence numbers for the synproxy-source
connection (generated as SYN cookies by the synproxy) and
the destination-synproxy connection (chosen by the destination
when a connection is established by the synproxy on behalf of
a verified source). This state is needed for sequence number
translation for each packet after the connection is established.
Therefore, it must be replicated to the servers for flows from
legitimate hosts.
Approach to replication. The networking community has
developed several approaches [57], [59], [60] to migrating
state across virtual machines, which we can leverage for
our problem. However, these approaches are not directly
applicable. First, packet processing at switches is at line rate,
and its performance is several orders of magnitude higher
than that of commodity servers / virtual machines. As a
result, we cannot apply a one-time cost operation (e.g., move
states from switches to servers via export/import APIs when
scaling) when we want to recompile the switch with new
P4 programs, since it is almost impossible to infer all the
exact state locations immediately. Moreover, different from the
scenario where the source and destination for state migration
have similar processing power, state on the switches comes in
much higher volume. Simply replicating the states from the
switch to the server would easily overwhelm the server.

To address these problems, our first step is to amortize
the traffic overhead across a period: when state is created or
modified in switches, we replicate it to the servers. Some states
may be out-of-date in the switch if a flow is terminated. This
signal is also transferred to the servers so that the relevant
states can be removed. We provide a unified interface between
the switch and server to keep the states consistent and up-to-
date, using a state replication protocol as shown in Fig. 9.
OP stands for operator, which can be a Put (state creation
or update), Delete (state deletion), or other types of state
synchronization operations. SEQ is used as a sequence number
for reliable transmissions. KEY records the packet headers to
index the state, and VALUE records the value of the state. For
example, in a typical sproxy, the KEY should be the five-tuples
and the VALUE should be the sequence number difference.

Second, to avoid overwhelming the servers, we spread the
traffic from a switch across a set of servers. During runtime,
the state replication traffic is distributed across these servers,

Fig. 10. POSEIDON Implementation.

which is achieved by embedding the server’s IP address into
the IP field of the state replication packets. The mapping
between the destination server’s IP address and the KEY is
stored in our controller. When the reloading starts, the con-
troller updates the upstream routing table with this mapping
to guarantee the corresponding traffic is steered to the correct
server instances. Note that there is a small time gap (hundreds
of milliseconds) for the P4 program to be successfully loaded.
During this time period, the suspicious traffic is steered to
the server clusters for traffic scrubbing, and these servers also
constantly report the established legitimate flow information
to the controller. After the new P4 program takes effect,
the controller updates the routing tables again to steer the
traffic to the switches.
Summary. To summarize, the runtime state replication follows
the following steps: (1) When operators specify a policy,
POSEIDON identifies the states that need replication. (2) At
runtime, if states are created/updated/deleted, POSEIDON gen-
erates state replication packets and steers such traffic across
a set of servers. It also records the mapping between the
server’s IP address and the KEY in the controller. (3) When
operators change the defense policy to handle new attacks,
POSEIDON updates the upstream routing according to the
mapping, so as to ensure that the legitimate traffic is steered
to the correct servers. It also recompiles and reloads the new
P4 programs. Note that the entire procedure runs automati-
cally when the POSEIDON system starts, and operators only
need make changes to the high-level policies when there are
dynamic attacks.

VII. IMPLEMENTATION

We have developed a prototype implementation of POSEI-
DON, including all the primitives in §IV, a policy enforcement
engine in §V, and the switch/server interface and the state
replication mechanisms in §VI, as shown in Fig. 10. The
primitives that can be offloaded to switches in POSEIDON are
implemented in P4 on Barefoot Tofino [61] switches, using
∼1800 lines of code. The corresponding parts that run on

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ENABLING PERFORMANT, FLEXIBLE AND COST-EFFICIENT DDoS DEFENSE WITH PROGRAMMABLE SWITCHES 1519

servers are implemented in DPDK [62], with ∼3600 lines
of code in C/C++. For the primitives that cannot be
offloaded into switches (e.g., puzzle), we reuse the state-of-
the-art defenses adapted from open source systems, such as
CAPTCHAs.

The policy enforcement engine is implemented in Python
with ∼600 lines of code. To translate a POSEIDON policy into
a P4 program, the engine first partitions the POSEIDON policy
into the stateful monitors and the packet processing logic. Then
these two components are translated into different P4 program
segments (e.g., registers, match-action tables, control flow)
separately. Finally, the two program segments are spliced into a
complete P4 program. The library of defense primitives (e.g.,
sproxy, rlimit, pass) can be directly accessed by the policy
enforcement engine when translating the code. To support
future extensions, we have also implemented a script that can
transform new defense actions into the format of the library of
POSEIDON actions. New actions can therefore be added easily.
The script also avoids name conflicts by adding a prefix to
variable names in the original action code.

The switch/server interface is implemented in P4 for the
switch component and in C/C++ (using DPDK) for the server
component. On the switch side, we have a P4 analyzer module
and a P4 modifier module, with ∼400 lines of Python code.
The P4 analyzer module first extracts the states that need to be
replicated, then the P4 modifier module augments the original
P4 program to support state replication. On the server side,
we implement a state parser module and a state replication
module in a separated thread using DPDK in ∼500 lines of
code. The state parser module first parses the keys and values
from the packets, then the state replication module updates the
corresponding states in the servers.

VIII. EVALUATION

In this section, we evaluate POSEIDON with respect to the
following key questions:

• How expressive is the POSEIDON language in supporting
different defense policies (§VIII-B)?

• How efficient is the POSEIDON policy placement mech-
anism in terms of resource utilization (§VIII-C)?

• How effective is the POSEIDON runtime management
mechanism for adapting to dynamic attacks (§VIII-D)?

• How well can POSEIDON mitigate attacks, in terms of
defense effectiveness, performance and cost (§VIII-E)?

A. Experimental Setup

We use a combination of a real-world testbed and
trace-driven evaluations to demonstrate the aforementioned
advantages. Our testbed has 10 Dell R730 servers, a Barefoot
Tofino switch (33 × 100 GbE) and an H3C switch. Each
server is equipped with Intel(R) Xeon(R) E5-2600 v4 CPUs
(2.4 GHz, 2 NUMAs, each with 6 physical cores and 12 logic
cores), 15360K L3 cache, 64G RAM and two Intel XL710
40GbE NICs. Fig. 10 shows the setup of the eight servers,
the Tofino switch, and the H3C switch, which compromise
the defense infrastructure; in addition, one server acts as the
controller that translates defense policies for deployment; and

TABLE III

REPLAYED WORKLOAD TRAFFIC

TABLE V

LINES OF CODE TO IMPLEMENT DIFFERENT DEFENSE INTENTS

IN POSEIDON, P4, AND C/C++ (USING DPDK)

another server hosts the traffic generator generating normal
workloads and different types of attack traffic.

The normal workload traffic is collected from an online
trace dataset [63] and an enterprise, including three types
of traffic traces to cover different scenarios, as shown in
TABLE III. These traces have different flow length and packet
sizes. We also use two public real-world attack traces, a SYN
flood attack trace [64] and a UDP flood attack trace [65].
For the other four types of attack traffic, i.e., DNS ampli-
fication, HTTP flood, Slowloris and Elephant flow, we use
a specialized DDoS traffic generating tool, UFONet [66],
to generate the corresponding attack traffic traces. In our
experiments, we replay these traces with DPDK Pktgen to
generate high-volume workload traffic and attack traffic. On
our testbed, we can ramp up the attack volume up to 40 Gbps.
For larger attacks, we use simulations.

B. Policy Expressiveness

To demonstrate the expressiveness of the POSEIDON prim-
itives, we have summarized state-of-the-art DDoS attacks
and their defense mechanisms, and presented the results in
TABLE IV. We further categorize them by different proto-
cols. For each protocol, there are a variety of DDoS attacks,
each targeting some specific vulnerabilities. Next, we present
a typical defense solution using POSEIDON primitives for each
DDoS attack.
ICMP Protocol. ICMP-based DDoS attacks include ICMP
flood attacks and Smurf attacks. To defend against ICMP
flood attacks, we can first use the cnt_fsm monitor to identify
suspicious IPs that send too many ICMP echo-request packets,
and then use the rlimit primitive to rate-limit the packets
from these IPs. For other IPs, we can simply let their packets
pass. For Smurf attacks, we can use the cnt_fsm monitor to
track all the protected servers’ ICMP echo-request packets
within a period, and only allow ICMP echo-reply packets that
have been queried by protected servers to enter the protected
network.
TCP Protocol. For TCP-based DDoS attacks, we have already
discussed typical defenses with POSEIDON primitives for

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

1520 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

TABLE IV

STATE-OF-THE-ART DDOS ATTACKS AND THEIR CORRESPONDING DEFENSE MECHANISMS

SYN flood attacks and Elephant Flow attacks in §IV-B. For
SYN-ACK flood attacks and ACK flood attacks, we can
use the cnt_fsm monitor to track whether the SYN-ACK
packets or ACK packets have been generated by protected
servers within a period, and only allow legitimate packets
to enter the protected network. For FIN/RST flood attacks,
we can first use the hshake_fsm monitor primitive to track the
connections between the protected servers and the external
network, and only allow FIN or RST packets in the active
connections. Furthermore, for these remaining FIN or ACK
packets, we use the cnt_fsm monitor to count the number
of FIN/RST packets in each connection and use the rlimit
primitive for rate limiting.
UDP Protocol. UDP-based DDoS attacks (especially
UDP-based amplification attacks) are one of the most popular
DDoS attacks today [67]. We have already discussed the
corresponding defenses with POSEIDON primitives for UDP
flood attacks and DNS amplification attacks in §IV-B. For

DNS flood attacks, we can use a similar approach as UDP
flood attacks, rate-limiting the DNS request packets from
the same address or subnet. For the other four UDP-based
amplification attacks (SSDP DDoS attacks, QUIC Reflection
attacks, NTP amplification attacks, and Memcached DDoS
attacks), we can use a similar defense as in DNS amplification
attacks, filtering replies that are not triggered by the victim
servers.
HTTP Protocol. We have already discussed the corresponding
defense solutions in POSEIDON for HTTP flood attacks and
SlowLoris attacks in detail in §IV-B.

From the discussions on each categorization above, we can
see that although the attacks require different defense solu-
tions, almost all these DDoS defenses require monitoring
primitives to identify the malicious packet groups, as well
as a reusable set of defense actions for packet processing.
Regarding this point, our monitor primitives provide a use-
ful abstraction to collect statistics and stateful information,

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ENABLING PERFORMANT, FLEXIBLE AND COST-EFFICIENT DDoS DEFENSE WITH PROGRAMMABLE SWITCHES 1521

Fig. 11. Traffic arriving at servers.

and our action primitives offer a powerful packet processing
abstraction for DDoS defenses. From TABLE IV, we can also
see the current set of primitives are expressive enough to cover
a wide range of state-of-the-art DDoS defense mechanisms.

We have provided six policy examples in §IV-B to demon-
strate the the expressiveness of our POSEIDON policy lan-
guage. We further summarize the number of lines of code in
POSEIDON, in P4, and in C/C++ when implementing these
six policy examples, as shown in TABLE V. From this table,
we can see that POSEIDON allows concise specifications of the
defense policies, without having to burden network operators
with the task of writing low-level code. Moreover, POSEIDON

also shields the complexities of the underlying hardware.
Policies #1, #2, #4, #5, and #6 can be fully implemented in the
switches, whereas #3 requires the assistance of the servers. But
a programmer does not have to be aware of the implementation
details. In particular, programming in P4 is akin to “assembly-
level” programming and usually requires hand optimizations.
We also include sample code in P4 for implementing policy
#1 in the Appendix included in our supplementary materials
as a concrete example.

C. Policy Placement Mechanism

To demonstrate the efficiency of POSEIDON policy place-
ment mechanism, we compare it with a strawman solution,
which simply places the programs using their policy IDs,
the smallest ID first. We assume that attackers launch three
attacks simultaneously, 10 Mpps SYN flood, 20 Mpps DNS
amplification and 15Mpps HTTP flood. The corresponding
resource utilization for each primitive could be obtained from
TABLE II. We assume that a switch has 12 stages, each with
5Mb register array and 4 stateful actions; these constraints are
much more strict than most Barefoot Tofino switches. We use
the rate of packets arriving at servers as the metric to evaluate
the effectiveness of our policy placement mechanism.

As we can see from Fig. 11, the more switches there are,
the more traffic is filtered at the switch and the fewer packets
are sent to the servers. Comparing with the strawman place-
ment mechanism, the placement of POSEIDON can mitigate
larger attacks with the same number of switches. Note that the
curves for both approaches would finally converge to the same
point. This is because when there are enough programmable
switches, all primitives that can run on the switches have been
offloaded; the rest of the primitives need to run on the servers,
and this leads to a constant number of packets to be sent to

Fig. 12. Received packets before/after policy transition.

Fig. 13. Broken connections before/after policy transition.

Fig. 14. Control traffic/workload traffic ratio.

the servers for processing. In our scenario, it is impossible for
attackers to launch tens of DDoS attacks simultaneously. As a
result, our ILP problem has a relatively small size, and it can
be solved within seconds. This also indicates that our system
is able to orchestrate the defense resources in a pretty fast
manner, which can accommodate to policy changes quickly.

D. Dynamic DDoS Attacks

To evaluate the effectiveness of runtime state replication
against attack dynamics, we mix normal workload traces
with attack traces and replay them from the packet gen-
erator. At runtime, we change the attack from #1 to #2,
and adapt the defense policy accordingly. As we can see in
Fig. 12 and Fig. 13, POSEIDON ensures that legitimate traffic
goes through the scrubbing center normally without broken
connections, even without packet loss. In contrast, without run-
time state replication, connections will be broken and packets
will be dropped, since no state can be found on the servers.
This would interrupt the legitimate flows and lead to significant

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

1522 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

Fig. 15. Throughput restoration for legitimate flows.

performance degradation. In addition, from the trends of the
three traces, we can conclude that the more elephant flows the
trace contains, the worse the flow interruption and packet loss
will be.

To evaluate the overhead of runtime state replication,
we replay three attack traffic traces at an increased rate.
As shown in Fig. 14, the ratio between control message traffic
and workload traffic is constant even when the attack traffic is
multiplied. This is because POSEIDON only replicates runtime
states for legitimate traffic. In this figure, the control message
ratio for Enterprise traffic is a bit higher than other two
traces. This is because the Enterprise trace contains a
large number of mouse flows (about 9 packets per flow), and
for each flow, we have to generate a state replication packet.
Even in this case, the overhead is still very low (less than 4%),
which indicates that our runtime management scheme incurs
negligible overheads.

E. Overall Effectiveness

To demonstrate the effectiveness of POSEIDON during
attacks, we measure the bandwidth of legitimate TCP flows
under the six types of DDoS attacks, and count the number
of sent/received packets at the traffic generator. We use a
simple time series anomaly detection tool nfdump for the
coarse-grained detection; the detection results would further
trigger the loading of different defense policies, and the
allocation of switch resources. Fig. 15 shows the defense effect
for legitimate TCP flows during the UDP flood attack. The
defense effect for the other types of DDoS attacks is similar,
since most attack traffic is filtered by POSEIDON before it
reaches the traffic generator.4 As we can see from the figure,
POSEIDON can respond to the attack rapidly and restore the
throughput of legitimate flows quickly, which indicates the
effectiveness of POSEIDON in coping with DDoS attacks. Note
that there is a small time gap between the attack onset and the
defense taking effect (in seconds), which mainly results from
the DDoS detection time, the execution time of our resource
orchestration module and the program loading time of the
Tofino switch.

4A closer look into our experiments also shows that the IP addresses of these
real-world traces are not very dispersed; the switching ASICs has enough
memory to support the monitor modules. We discuss further on this issue in
Discussion(§IX).

Fig. 16. Latency in traffic scrubbing center.

To demonstrate the performance of POSEIDON, we measure
the end-to-end latency for workload traffic at the traffic gen-
erator, based on these six typical DDoS attacks, and compare
it with an NSFOCUS ADS 4020 middlebox [14] and an
NFV system similar to Bohatei [16]. As we can see from
Fig. 16, for most types of attacks, POSEIDON reduces packet
processing latency in scrubbing centers by two orders of
magnitude compared with the middlebox and the NFV system.
In particular, POSEIDON processes packets within hundreds of
nanoseconds while the middlebox or the NFV system requires
tens of microseconds. This demonstrates a significant perfor-
mance improvement, which is crucial for the requirements of
latency-sensitive services in today’s datacenters. For HTTP
flood, we use puzzle, which can only be implemented on
the servers; so the latency benefit of POSEIDON is not as
obvious and latency results are comparable. Since we do not
have access to terabit-level traffic generators at this moment,
we are not able to evaluate the throughput of our prototype
using extreme pressure tests. However, in principle, POSEIDON

can defend against ∼Tbps attack traffic with a small number
of devices (including programmable switches and commodity
servers). This is because a compiled P4 program on a pro-
grammable switch is guaranteed to run at terabit line rate;
otherwise it would already be rejected by the compiler at
the compilation stage [23], [32]. For terabit DDoS attacks,
the other two approaches would require an extremely large
number of devices. In contrast, POSEIDON can achieve this
with much lower device count and much lower cost.

To show the cost reduction of POSEIDON compared with
the other two solutions, TABLE I serves as a good starting
point. As we can see, programmable switches can reduce the
equipment cost by nearly two orders of magnitude, and reduce
the power consumption by nearly three orders of magnitude.
Although POSEIDON requires a small number of servers to
assist programmable switches, the order of magnitude will
not change drastically. Similar results also been obtained
by a recent project that evaluates the power consumption
of in-network computing [32], which shows that switching
ASICs can reduce power consumption by 1000x compared
with commodity CPU.

IX. DISCUSSION

Security of POSEIDON. POSEIDON shares a similar two-layer
architecture as classic SDN, a control layer and an

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ENABLING PERFORMANT, FLEXIBLE AND COST-EFFICIENT DDoS DEFENSE WITH PROGRAMMABLE SWITCHES 1523

infrastructure layer. However, it is resilient to attack vectors in
classic SDNs that target the control channel [68]–[71], because
it does not adopt the reactive event processing paradigm
in OpenFlow-based SDN. However, there are still several
potential vulnerabilities. First, attackers may use spoofed traf-
fic to mislead monitor modules to invoke the wrong action
modules, or overwhelm the stateful memory in switching
ASICs (e.g., hash table in monitor primitives). This may
further lead to statistical inaccuracy and unexpected hash
collisions. Actually, spoofed IP traffic is a challenge that
is not specific to POSEIDON; it also affects a number of
other switch-based systems as listed in §X. We observe that
a recent research effort, NetHCF [45], [72], tries to filter
spoofed IP traffic with programmable switches, which can
be a good starting point to prevent statistic pollution and
reduce unnecessary false positive. It should be easy to integrate
such mechanisms into POSEIDON. Without spoofed traffic,
the monitor modules in POSEIDON (5∼10 MB SRAM per
stage in the latest programmable switch) can guarantee a
very low false positive (e.g., less than 1%) for a few million
buckets. This could potentially accommodate millions of IPs
and billions of packets per second. This has also been validated
by several other recent research projects [73], [74], which have
developed various sketches with programmable switches to
conduct network monitoring under terabit traffic. In addition,
we can also leverage external DRAM in servers to alleviate the
memory pressure [75] in programmable switches. This would
make much more memory available for sketches and achieve
much lower hash collision rates (or false positives).

Second, attackers may change the attack composition
dynamically within seconds so that POSEIDON cannot respond
in a timely manner. A potential solution is to further optimize
the performance of our orchestration component using more
powerful servers, and to leverage more advanced heuristics
to solve the ILP problem. In addition, we can also use the
switch-only primitives for long-lived attacks, and only involve
the servers for short-lived attacks. In this way, defenses against
short-lived attacks will not need to recompile the switch
programs, avoiding the need to trigger frequent policy changes.
We leave the detailed exploration of these security problems
to our future work.
Extensibility of POSEIDON. POSEIDON has a set of modu-
lar primitives for monitoring, analysis, and attack response.
Operators could easily develop more defense primitives in
this framework. To integrate a new defense primitive into
the existing defense library, operators should define the new
primitive, analyze its implementation with respect to switching
ASICs constraints, calculate its resource usage, and extend the
defense library with this new primitive. Then, the new primi-
tive could be loaded into our POSEIDON framework and used
with other primitives. Note that although POSEIDON cannot
handle zero-day DDoS attacks directly, the programmability
and modularity properties of POSEIDON would accelerate
the deployment of new defense mechanisms significantly.
This benefit cannot be achieved with traditional proprietary
middleboxes, even NFV-based defense systems.
Automation of POSEIDON. Current POSEIDON requires some
human intervention for writing the defense policies. This can

be further automated if there are no zero-day DDoS attacks.
Operators can set a defense policy for each DDoS attack
beforehand, and POSEIDON would load the corresponding
policies when DDoS attacks are detected. Nevertheless, for
zero-day DDoS attacks, human intervention is unavoidable.
Operators need analyze the characteristics of the new DDoS
attacks, and may potentially need extend the POSEIDON prim-
itives with more defense strategies.

X. RELATED WORK

There is a long body of works on DDoS attacks and
defenses, for which comprehensive surveys exist [41], [76].
Here, we briefly discuss the other most related topics.
SDN/NFV-based DDoS Defense. Some works have been
devoted to defending against DDoS attacks with SDN/NFV
from various perspectives [77]. Bohatei [16] leverages NFV
and SDN to achieve flexible and elastic DDoS defense.
Xu et al. [78] propose an adaptive approach using limited
switch TCAM to balance the coverage and granularity of
DDoS detection. Afek et al. [79] propose to filter the spoof-
ing traffic with OpenFlow switches. By contrast, POSEIDON

proposes a cost-efficient and agile DDoS defense framework
leveraging the new opportunities with programmable switches.
Programmable Switches. Researchers have looked at accel-
erating various applications in networking and distributed
systems using programmable switches. Examples include
layer-4 load balancing [24], network resource allocation mech-
anisms [80], key-value stores [25], coordination services [31],
fast connectivity recovery [81], network monitoring and mea-
surement tasks [44], [51], [82]. These applications achieve
far better performance with lower costs than their software
counterparts that run on commodity servers. POSEIDON is
inspired by these works, but focuses on a different problem,
DDoS defense, and provides a systematic approach to inte-
grating programmable switches into the current DDoS defense
framework.
Policy Languages. There are many domain-specific languages
in networking and security communities which aim to simplify
policy expression, such as Chimera [83], NetCore/NetKAT
[42], [47], [84], PSI [85]. Although our key idea of
software-defined programmable security is not tied to any
specific language, to hide underlying hardware complexity and
reduce operator burden, we extend POSEIDON policy language
based on Pyretic NetCore [46], and provide a high-level
abstraction tailored for DDoS defenses.

XI. CONCLUSION

In this article, we highlight the challenges for today’s DDoS
defense and identify new opportunities that programmable
switches bring for mitigating volumetric DDoS attacks. We
introduce POSEIDON, a performant, cost-efficient and agile
DDoS defense system, which addresses the key limitations
in today’s DDoS defense. The POSEIDON language provides
a simple, modular DDoS policy abstraction that can sup-
port a range of policies, shielding the low-level hardware
complexity. The POSEIDON orchestration component provides
an optimized, efficient resource orchestration mechanism to

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

1524 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

map the high-level policy primitives to the underlying hard-
ware resources. The POSEIDON runtime manager provides a
transparent, effective scheme to adapt to the attack dynamics
while achieving resource utilization efficiency and guaran-
teeing correctness for legitimate flows. Our implementation
and evaluation demonstrate that POSEIDON is highly effective
in attack mitigation, and only incurs negligible overheads.
These results show that POSEIDON is an effective system for
mitigating modern advanced DDoS attacks.

REFERENCES

[1] M. Zhang et al., “Poseidon: Mitigating volumetric DDoS attacks with
programmable switches,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2020.

[2] W. Turton. (2017). An Interview With Lizard Squad, The Hackers Who
Took Down Xbox Live. Accessed: Jul. 15, 2019. [Online]. Available:
https://www.dailydot.com/debug/lizard-squad-hackers/

[3] D. Pauli. (2016). Chinese Gambling Site Served Near Record-
Breaking Complex DDoS. Accessed: Jul. 15, 2019. [Online]. Available:
https://www.dailydot.com/debug/lizard-squad-hackers/

[4] S. Moss. (2016). Major DDoS Attack on Dyn Disrupts AWS,
Twitter, Spotify and More. Accessed: Jul. 15, 2018. [Online].
Available: http://www.datacenterdynamics.com/content-tracks/security-
risk/major-ddos-attack-on-dyn-disrupts-aws-twitter-spotify-and-
more/97176.fullarticle

[5] A. Scroxton. (2016). Dyn Reveals Details of Complex and Sophisticated
IoT Botnet Attack. Accessed: Jul. 15, 2018. [Online]. Available:
https://www.computerweekly.com/news/450401857/Dyn-reveals-details-
of-complex-and-sophisticated-IoT-botnet-attack

[6] C. Security. (2019). DDoS Attacks 2018: New Records and Trends.
Accessed: Mar. 19, 2019. [Online]. Available: https://www.calyptix.com/
top-threats/ddos-attacks-2018-new-records-and-trends/

[7] (2018). 5 Most Famous DDoS Attacks. Accessed: Aug. 19, 2019.
[Online]. Available: https://www.a10networks.com/resources/articles/5-
most-famous-ddos-attacks

[8] M. Suk Kang, S. Bum Lee, and V. D. Gligor, “The crossfire attack,” in
Proc. IEEE Symp. Secur. Privacy, May 2013, pp. 127–141.

[9] R. Rasti, M. Murthy, N. Weaver, and V. Paxson, “Temporal lensing and
its application in pulsing denial-of-service attacks,” in Proc. IEEE Symp.
Secur. Privacy, May 2015, pp. 187–198.

[10] H. Shan, Q. Wang, and C. Pu, “Tail attacks on Web applications,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1725–1739.

[11] Engadget. (2019). New dos Attack Exploits Algorithms to Knock Sites
Offline. Accessed: Aug. 19, 2019. [Online]. Available: https://www.
engadget.com/2019/08/09/new-ddos-attack-algorithms/

[12] Corero. (2018). The Evolution of DDoS Protection. Accessed:
Jun. 19, 2018. [Online]. Available: http://info.corero.com/the-evolution-
of-ddos-protection.html

[13] A. Mahimkar et al., “Dfence: Transparent network-based denial of
service mitigation,” in Proc. NSDI, vol. 7, 2007, pp. 327–340.

[14] NSFOCUS. (2018). Nsfocus Anti DDoS solution. Accessed:
Jul. 8, 2019].[Online]. Available: https://nsfocusglobal.com/wp-content/
uploads/2018/05/Anti-DDoS-Solution.pdf

[15] Cisco. (2018). Cisco Guard xt 5650. Accessed: Jul. 8, 2019]. [Online].
Available: https://www.cisco.com/c/en/us/products/collateral/security/
guard-xt-5650a/product_data_sheet0900aecd800fa55e.html

[16] S. K. Fayaz et al., “Bohatei: Flexible and elastic DDoS defense,” in
Proc. USENIX Secur., 2015, pp. 817–832.

[17] M. Antonakakis et al., “Understanding the mirai botnet,” in Proc.
USENIX Secur., 2017, pp. 1092–1110.

[18] S. Weagle. (2018). The Rise of IoT Botnet Threats and DDoS Attacks.
Accessed: Jul. 30, 2019. [Online]. Available: https://www.corero.
com/blog/870-the-rise-of-iot-botnet-threats-and-ddos-attacks.html

[19] A. D. Rayome. (2018). DDoS Attacks Increased 91% in 2017 Thanks to
IoT. Accessed: Jul. 23, 2019. [Online]. Available: https://www.
techrepublic.com/article/ddos-attacks-increased-91-in-2017-thanks-to-
iot/

[20] T. Spring. (2018). Mirai Variant Targets Financial Sector With IoT DDoS
Attacks. Accessed: Jul. 29, 2019. [Online]. Available: https://threatpost.
com/mirai-variant-targets-financial-sector-with-iot-ddos-attacks/131056/

[21] P. X. Gao et al., “Network requirements for resource disaggregation,”
in Proc. OSDI, vol. 16, 2016, pp. 249–264.

[22] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
in Proc. ACM Conf. Special Interest Group Data Commun., Aug. 2015,
pp. 523–536.

[23] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. ACM SIG-
COMM Conf., Aug. 2013, pp. 99–110.

[24] R. Miao et al., “Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching asics,” in Proc. SIGCOMM, 2017, pp. 15–28.

[25] X. Jin et al., “NetCache: Balancing key-value stores with fast in-
network caching,” in Proc. 26th Symp. Oper. Syst. Princ., Oct. 2017,
pp. 121–136.

[26] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[27] M. S. Kang, V. D. Gligor, and V. Sekar, “SPIFFY: Inducing cost-
detectability tradeoffs for persistent link-flooding attacks,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2016, pp. 53–55.

[28] O. Çetin et al., “Cleaning up the Internet of evil things: Real-world
evidence on isp and consumer efforts to remove mirai,” in NDSS,
2019.

[29] R. Gandhi et al., “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 27–38, 2015.

[30] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
Information rich flow record generation on commodity switches,” in
Proc. 13th EuroSys Conf., Apr. 2018, p. 11.

[31] X. Jin et al., “Netchain: Scale-free sub-rtt coordination,” in Proc. NSDI,
2018, pp. 35–49.

[32] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman, “The
case for in-network computing on demand,” in Proc. 14th EuroSys Conf.,
Mar. 2019, p. 21.

[33] A. Business. (2018). Distributed Denial of Service (DDoS) Defense.
Accessed: Aug. 13, 2019. [Online]. Available: https://www.business.
att.com/products/ddos-protection.html

[34] A. Cloud. (2018). Anti-DDoS Basic. Accessed: Jul. 19, 2019. [Online].
Available: https://www.alibabacloud.com/products/ddosdip

[35] T. Cloud. (2018). Dayu Anti-DDoS. Accessed: Aug. 19, 2019. [Online].
Available: https://intl.cloud.tencent.com/product/bad

[36] S. Ramanathan, J. Mirkovic, M. Yu, and Y. Zhang, “SENSS against
volumetric DDoS attacks,” in Proc. 34th Annu. Comput. Secur. Appl.
Conf., Dec. 2018, pp. 266–277.

[37] StressThem. (2019). The Next Generation IP Stresser. Accessed:
Aug. 19, 2019. [Online]. Available: https://www.stressthem.to/

[38] TS3Booter. (2019). Ts3booter.net. Accessed: Aug. 19, 2019. [Online].
Available: https://ts3booter.net/

[39] X. Luo et al., “On a new class of pulsing denial-of-service attacks and
the defense,” in Proc. NDSS, 2005.

[40] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of
network traffic anomalies,” in Proc. 2nd ACM SIGCOMM Workshop
Internet measurment, 2002, pp. 71–82.

[41] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Comput. Commun. Rev., vol. 34,
no. 2, pp. 39–53, Apr. 2004.

[42] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful network-wide abstractions for packet processing,” in
Proc. ACM SIGCOMM Conf., Aug. 2016, pp. 29–43.

[43] A. Sivaraman et al., “Packet transactions: High-level programming
for line-rate switches,” in Proc. ACM SIGCOMM Conf., Aug. 2016,
pp. 15–28.

[44] J. Sonchack et al., “Scaling hardware accelerated network monitoring
to concurrent and dynamic queries with flow,” in Proc. ATC, 2018,
pp. 823–835.

[45] G. Li et al., “NETHCF: Enabling line-rate and adaptive spoofed IP traffic
filtering,” in Proc. ICNP, 2019, pp. 1–12.

[46] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software defined networks,” in Proc. NSDI, vol. 13, 2013,
pp. 1–13.

[47] C. J. Anderson et al., “NetKAT: Semantic foundations for networks,”
ACM SIGPLAN Notices, vol. 49, no. 1, pp. 113–126, 2014.

[48] S. Pontarelli et al., “Flowblaze: Stateful packet processing in hardware,”
in Proc. NSDI, 2019, pp. 531–548.

[49] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. NSDI, vol. 13, 2013, pp. 29–42.

[50] D. Kim et al., “TEA: Enabling state-intensive network functions on pro-
grammable switches,” in Proc. Annu. Conf. ACM Special Interest Group
Data Commun. Appl., Technol., Archit., Protocols Comput. Commun.,
Jul. 2020, pp. 90–106.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ENABLING PERFORMANT, FLEXIBLE AND COST-EFFICIENT DDoS DEFENSE WITH PROGRAMMABLE SWITCHES 1525

[51] S. Narayana et al., “Language-directed hardware design for network
performance monitoring,” in Proc. Conf. ACM Special Interest Group
Data Commun., Aug. 2017, pp. 85–98.

[52] A. Juels et al., “Client puzzles: A cryptographic countermeasure
against connection depletion attacks,” in Proc. NDSS, vol. 99, 1999,
pp. 151–165.

[53] X. Wang and M. K. Reiter, “Defending against denial-of-service attacks
with puzzle auctions,” in Proc. 19th Int. Conf. Data Eng., 2003,
pp. 78–92.

[54] S. Kandula et al., “Botz-4-sale: Surviving organized DDoS attacks that
mimic flash crowds,” in Proc. NSDI, 2005, pp. 287–300.

[55] B. Vass, E. Bérczi-Kovács, C. Raiciu, and G. Rétvári, “Compiling packet
programs to reconfigurable switches,” in Proc. 3rd P4 Workshop Eur.,
Dec. 2020, pp. 103–115.

[56] Gurobi. (2019). The Fastest Mathematical Programming Solver.
Accessed: Jun. 19, 2019. [Online]. Available: http://www.gurobi.com/

[57] J. Khalid et al., “Paving the way for NFV: Simplifying middlebox
modifications using statealyzr,” in Proc. NSDI, 2016, pp. 239–253.

[58] H. Li, H. Hu, G. Gu, G.-J. Ahn, and F. Zhang, “VNIDS: Towards
elastic security with safe and efficient virtualization of network intrusion
detection systems,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 17–34.

[59] A. Gember-Jacobson et al., “OpenNF: Enabling innovation in net-
work function control,” in Proc. ACM Conf. SIGCOMM, Aug. 2014,
pp. 163–174.

[60] S. Woo et al., “Elastic scaling of stateful network functions,” in Proc.
NSDI, 2018, pp. 299–312.

[61] B. Networks. (2017). Tofino: World’s Fastest P4-Programmable Eth-
ernet Switch Asics. Accessed: Jun. 13, 2019]. [Online]. Available:
https://barefootnetworks.com/products/brief-tofino/

[62] I. DPDK. (2017). Learn How to Get Involved With DPDK. Accessed:
Jun. 13, 2019. [Online]. Available: https://www.dpdk.org/

[63] W. Project. (2019). Mawi Working Group Traffic Archive. Accessed:
Aug. 19, 2019. [Online]. Available: http://mawi.wide.ad.jp/mawi/

[64] C. S. University. (2019). Darpa 2009 Intrusion Detection Dataset.
Accessed: Aug. 19, 2019. [Online]. Available: http://www.darpa2009.
netsec.colostate.edu/

[65] C. I. for Cybersecurity. (2019). A Realistic Cyber Defense Dataset.
Accessed: Aug. 19, 2019. [Online]. Available: https://www.unb.ca/cic/
datasets/ids-2018.html

[66] Epsylon. (2019). Ufonet—Denial of Service Toolkit. Accessed:
Aug. 19, 2019. [Online]. Available: https://ufonet.03c8.net

[67] C. Rossow, “Amplification hell: Revisiting network protocols for DDoS
abuse,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2014.

[68] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2013,
pp. 413–424.

[69] R. Skowyra et al., “Effective topology tampering attacks and defenses
in software-defined networks,” in Proc. 48th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2018, pp. 415–432.

[70] M. Zhang et al., “Control plane reflection attacks in SDNs: New attacks
and countermeasures,” in Proc. RAID, 2018, pp. 161–183.

[71] J. Cao et al., “The crosspath attack: Disrupting the SDN control channel
via shared links,” in Proc. USENIX Secur., 2019, pp. 19–36.

[72] J. Bai, J. Bi, M. Zhang, and G. Li, “Filtering spoofed IP traffic using
switching ASICs,” in Proc. ACM SIGCOMM Conf. Posters Demos,
Aug. 2018, pp. 51–53.

[73] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman,
“One sketch to rule them all: Rethinking network flow monitor-
ing with UnivMon,” in Proc. ACM SIGCOMM Conf., Aug. 2016,
pp. 101–114.

[74] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 561–575.

[75] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external
memory for switch data planes,” in Proc. 17th ACM Workshop Hot
Topics Netw., Nov. 2018, pp. 1–7.

[76] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks,” IEEE
Commun. Surveys Tuts., vol. 15, no. 4, pp. 2046–2069, 4th Quart., 2013.

[77] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Y. Yau, and J. Wu, “Realtime DDoS
defense using COTS SDN switches via adaptive correlation analysis,”
IEEE Trans. Inf. Forensics Security, vol. 13, no. 7, pp. 1838–1853,
Jul. 2018.

[78] Y. Xu and Y. Liu, “DDoS attack detection under SDN context,” in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[79] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with
SDN data plane,” in Proc. IEEE Conf. Comput. Commun., May 2017,
pp. 1–9.

[80] N. K. Sharma et al., “Evaluating the power of flexible packet processing
for network resource allocation,” in Proc. NSDI, 2017, pp. 67–82.

[81] T. Holterbach et al., “Blink: Fast connectivity recovery entirely in the
data plane,” in Proc. NSDI, 2019, pp. 161–176.

[82] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018,
pp. 357–371.

[83] K. Borders et al., “Chimera: A declarative language for streaming
network traffic analysis,” in Proc. USENIX Secur., 2012, pp. 365–379.

[84] N. Foster et al., “Frenetic: A network programming language,” ACM
SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, 2011.

[85] T. Yu, S. K. Fayaz, M. Collins, V. Sekar, and S. Seshan, “PSI: Precise
security instrumentation for enterprise networks,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2017.

Guanyu Li received the B.S. degree from the School
of Computer Science and Technology, Huazhong
University of Science and Technology, China.
He is currently pursuing the Ph.D. degree with
the Institute for Network Science and Cyberspace,
Tsinghua University. His research interests include
software-defined networking, network function vir-
tualization, and cyber security.

Menghao Zhang (Graduate Student Member, IEEE)
received the B.S. degree in computer science from
Tsinghua University, China, where he is currently
pursuing the Ph.D. degree with the Institute for Net-
work Science and Cyberspace. His research interests
include software-defined networking, network func-
tion virtualization, and cyber security.

Shicheng Wang (Graduate Student Member, IEEE)
received the B.S. degree in computer science from
Tsinghua University, China, where he is currently
pursuing the M.S. degree with the Institute for Net-
work Science and Cyberspace. His research interests
include source address validation and programmable
data plane.

Chang Liu received the B.S. degree from the School
of Computer Science and Technology, Beijing Insti-
tute of Technology, China. He is currently pursuing
the M.S. degree with the Institute for Network
Science and Cyberspace, Tsinghua University. His
research interests include software-defined network-
ing, programmable data plane, and cyber security.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

1526 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

Mingwei Xu (Senior Member, IEEE) received the
B.S. and Ph.D. degrees from Tsinghua University.
He is currently a Full Professor with the Department
of Computer Science and Technology, Tsinghua
University. His research interests include computer
network architecture, high-speed router architecture,
and network security.

Ang Chen received the Ph.D. degree from the
Department of Computer and Information Science,
University of Pennsylvania. He is currently an Assis-
tant Professor with the Department of Computer
Science, Rice University. His recent projects have
a particular focus on leveraging programmable net-
works to design new solutions in network security
and efficient distributed systems. His research inter-
ests include distributed systems, networking, and
security.

Hongxin Hu (Member, IEEE) received the Ph.D.
degree in computer science from Arizona State
University, Tempe, AZ, USA, in 2012. He is cur-
rently an Associate Professor with the Department
of Computer Science and Engineering, University at
Buffalo, SUNY. He has published more than 100 ref-
ereed technical articles, many of which appeared in
top conferences and journals. His current research
interests include security, privacy, networking, and
systems. He received the NSF CAREER Award
in 2019. He was also a recipient of the Best Paper

Award from ACM SIGCSE 2018 and ACM CODASPY 2014 and the Best
Paper Award Honorable Mention from ACM SACMAT 2016, IEEE ICNP
2015, and ACM SACMAT 2011.

Guofei Gu (Fellow, IEEE) received the Ph.D. degree
in computer science from the College of Computing,
Georgia Tech, in 2008. He is currently a Profes-
sor with the Department of Computer Science and
Engineering, Texas A&M University. His research
interests include network and systems security, such
as malware and APT defense, software-defined net-
working (SDN/NFV) security, mobile and IoT secu-
rity, and intrusion/anomaly detection.

Qi Li (Senior Member, IEEE) received the Ph.D.
degree from Tsinghua University. He is currently
an Associate Professor with the Institute for Net-
work Sciences and Cyberspace, Tsinghua University.
He has worked with ETH Zurich, The University of
Texas at San Antonio, The Chinese University of
Hong Kong, and the Chinese Academy of Sciences.
His research interests include network and system
security, particularly in Internet and cloud security,
mobile security, and big data security. He is currently
an Editorial Board Member of the IEEE TDSC and
ACM DTRAP.

Jianping Wu (Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees from Tsinghua University,
Beijing, China. He is currently a Full Professor and
the Director of the Network Research Center and
also a Ph.D. Supervisor with the Department of
Computer Science and Technology, Tsinghua Uni-
versity. Since 1994, he has been in charge of China
Education and Research Network. His research inter-
ests include next-generation Internet, IPv6 deploy-
ment and technologies, and Internet protocol design
and engineering.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:20:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

