
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

1

NETHCF: Filtering Spoofed IP Traffic With
Programmable Switches

Menghao Zhang, Guanyu Li, Xiao Kong, Chang Liu, Mingwei Xu, Guofei Gu, Jianping Wu

Abstract—In this paper, we identify the opportunity of using programmable switches to improve the state of the art in spoofed IP traffic
filtering, and propose NETHCF, a line-rate in-network system to filter spoofed traffic. One key challenge in the design of NETHCF is to
handle the restrictions stemmed from the limited computational model and memory resources of programmable switches. We address
this by decomposing the HCF scheme into two complementary parts, by aggregating the IP-to-Hop-Count (IP2HC) mapping table for
efficient memory usage, and by designing adaptive mechanisms to handle routing changes, IP popularity changes, and network activity
dynamics. We implement an open-source prototype of NETHCF, and conduct extensive evaluations. The evaluation results
demonstrate that NETHCF is able to process most legitimate traffic in 1µs, filter spoofed IP traffic effectively under network dynamics,
with less than 30% of switch resource occupation.

Index Terms—Spoofed IP traffic, programmable switches, hop-count filtering.

F

1 INTRODUCTION

Spoofed IP traffic remains a significant threat to the Inter-
net, which is commonly associated with malicious network
activities, especially Distributed Denial of Service (DDoS)
attacks [2]. Although many research projects and IETF drafts
have been devoted to thwarting spoofed IP traffic, IP ad-
dress spoofing continues to be a prevalent problems, and
the attacks associated with it are still frequently reported in
the news [3]. According to the Spoofer Project of CAIDA [4],
24.4% of the Autonomous Systems (ASes) do not deploy any
countermeasure to disable spoofed IP traffic, and around
16.1% IP addresses in the Internet can be spoofed. Fur-
thermore, geographical tests show that the networks that
allow IP spoofing are distributed worldwide, making this a
widespread problem.

Although an attacker can forge any field in the IP header,
she/he cannot easily falsify the number of hops an IP packet
takes to reach its destination, because it depends on the
underlying network paths and routing mechanisms. Based
on this observation, some previous works [5], [6] propose
hop-count based defense mechanisms called Hop-Count Fil-
tering (HCF), which can filter spoofed IP traffic (e.g., TCP,
UDP, ICMP, etc.) with an IP-to-Hop-Count (IP2HC) map-
ping table. To guarantee correctness and prevent pollution
by attackers, the IP2HC mapping table should only be
updated by legitimate packets. One common approach is to

M. Zhang, G. Li, X. Kong, C. Liu, M. Xu, J. Wu are with the Institute for Net-
work Sciences and Cyberspace, Tsinghua University, Beijing 100084, China;
also with the Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China; also with the Beijing National Research
Center for Information Science and Technology (BNRist), Beijing 100084,
China. E-mail: {zhangmh16, ligy18, kx19, l-c19}@mails.tsinghua.edu.cn,
xumw@tsinghua.edu.cn, jianping@cernet.edu.cn.
G. Gu is with the Department of Computer Science and Engineer-
ing, Texas A&M University, College Station, TX 77840 USA. E-mail:
guofei@cse.tamu.edu.
Manuscript received on May. 21, 2021. This work was supported in part by the
National Key R&D Program of China under Grant 2019YFB1802504 and in
part by the National Science Foundation of China under Grant 61872426. A
preliminary version of this paper appeared in the conference of ICNP 2019 [1].

Switch

End-host

HCF

Normal
Traffic

Spoofed
Traffic

End-host

HCF

End-host

HCF

Switch

End-host

HCF

Normal
Traffic

Spoofed
Traffic

End-host

HCF

End-host

HCF

NetHCF

CPU

NetHCF

(a) Existing HCF Scheme

Switch

End-host

HCF

Normal
Traffic

Spoofed
Traffic

End-host

HCF

End-host

HCF

Switch

End-host

HCF

Normal
Traffic

Spoofed
Traffic

End-host

HCF

End-host

HCF

NetHCF

CPU

NetHCF

(b) NETHCF

Figure 1: NETHCF is a novel re-design of the HCF defense.

monitor the establishment procedures of TCP connections,
and update the table only using the connections that have
been successfully established. This table can then be used to
filter spoofed packets with inconsistent hop counts.

State-of-the-art HCF filtering mechanisms [5], [6] are
all located at the end hosts. Indeed, until recently, the
conventional wisdom has been that switch hardware must
be simple, fixed, and stateless. This necessarily means that
the monitoring of TCP establishment procedures has to be
performed in the network stacks at end hosts. Actually,
they have been partly integrated into the Linux ecosystem.
The key downside of these systems is that spoofed packets
cannot be filtered until they arrive at the destination servers,
which already incurs bandwidth waste, deployment redun-
dancy, and delayed setup of the full mapping table (details
in §2.2). Even if the packet filtering part of these systems
can be separated and installed in edge switches, interactions
between the switch and servers are unavoidable, bringing
considerable table updating delay and bandwidth resource
consumption.

The emergence of programmable switches [7], [8] is
shifting the paradigm of simple and fixed switch hardware.
Programmable switches enable us to offload intelligence

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

2

into networks, providing opportunities to filter the spoofed
traffic at line rate in switches. Since the programmable
switching ASICs (Application-Specific Integrated Circuits)
can easily process a few billion packets per second (∼Tbps
throughput) [9], [10], one switch could serve tens to hun-
dreds of servers, saving the precious computation and mem-
ory resources on end servers. Besides, spoofed IP traffic is
filtered before entering the victim network, avoiding unnec-
essary bandwidth waste and potential collateral damage.
We can also deploy such a switch at a strategic location in
the network, so that it could set up the IP2HC mapping
table faster. A switch-based design can also achieve lower
latency and jitter, which are critical to latency-sensitive
applications [11], [12], compared to a server-based design.
This is because of the notable performance gap between the
switching ASICs and general computation resources (e.g.,
CPU).

Despite these substantial benefits, applying traditional
HCF techniques in a switch-based design is non-trivial. In
order to design a correct and efficient in-network line-rate
HCF, we must carefully address several design challenges.
First, for HCF to take effect, the switch must maintain a cor-
rect and up-to-date IP2HC mapping table for table lookup.
However, the switching ASICs only have limited on-chip
memory (i.e., SRAM and TCAM), which is impossible to
store the full IP2HC mapping table. Second, as the network
is dynamic, the HCF system should also be adapt to network
dynamics, e.g., legitimate hop-count changes, IP popular-
ity changes, and network attacks. However, the switching
ASICs have a very restrictive computational model, which
is challenging to adapt to network dynamics in a timely and
effective manner.

To address the challenges above, in this paper, we
present NETHCF, an in-network spoofed traffic filtering
system. As shown in Figure 1, different from traditional
HCF designs, we decouple the existing HCF scheme into
two complementary parts, a data plane cache on switching
ASICs and a control plane mirror with general computation
resources. The cache serves the “hot keys”, or legitimate
packets, at line rate in the data plane. The mirror processes
the packets that miss the cache, maintains the IP2HC map-
ping table, and constantly adjusts the posture of NETHCF
to adapt to network dynamics. These two parts rely on
each other to overcome their limitations, achieving both
correctness and efficiency. We implement a prototype of
NETHCF with Barefoot Tofino [7], and make its source code
publicly available here [13]. Our prototype and evaluation
demonstrate that NETHCF can achieve line-rate and adap-
tive spoofed traffic filtering with negligible overheads.

In summary, our contributions in this paper include:

• We analyze the limitations of the traditional HCF de-
signs, and identify new opportunities for improving
HCF with programmable switching ASICs (§2).

• We propose NETHCF, a line-rate in-network spoofed
traffic filtering system. We decouple the traditional
HCF system into two complementary parts to fit the
computational model of switching ASICs, aggregate
the IP2HC mapping table to cache more entries in
the data plane, and design several mechanisms to
make NETHCF adapt to end-to-end routing changes,

IP popularity changes, and network activity dynam-
ics (§3).

• We implement a prototype of NETHCF, which is
publicly available on Github [13]. We also conduct
extensive evaluations to show that NETHCF is able
to guarantee the line-rate processing for legitimate
traffic and filter the spoof traffic effectively, with
negligible overheads (§5, §6).

Finally, we discuss several issues in §4, describe related
works in §7 and conclude this paper in §8.

2 BACKGROUND AND MOTIVATION

In this section, we first give some backgrounds on spoofed
packet filtering techniques and the HCF scheme, then de-
scribe the problems of the existing HCF scheme, and finally
show the advantages of programmable switches to resolve
the aforementioned headaches.

2.1 Background on HCF
Source address spoofing is among one of the most se-
rious problems that plague the Internet. To thwart this,
researchers have proposed two distinct kinds of approaches:
router-based and host-based. The router-based approaches
install defense mechanisms inside routers to trace the
source(s) of attack [14], [15], [16], [17], [18], or detect and
block the attacking traffic with coordinated routers [19],
[20], [21], [22], [23], [24], [25]. However, these solutions
require not only the router support but also coordination
among diverse routers and networks, even wide-spread
deployment to achieve their potentials. In contrast to router-
based approaches, host-based approaches can be deployed
with lower requirements. And the end systems (e.g., the
edge customers of the Internet, small ISPs, data centers or
enterprises) have a much stronger incentive to deploy de-
fense mechanisms than network service providers. The host-
based approaches use sophisticated source-discrimination
schemes [26], [27], [28] or significantly reduce the resource
consumption of each request [29], [30], [31] to withstand the
flooding traffic.

HCF [5], [6] falls into the category of host-based so-
lutions and shines from other approaches because of its
simplicity, gracefulness and effectiveness. It can validate
incoming IP packets at an Internet server without any
cryptographic methodology or router support, making it
lightweight and appealing to customers (victims). Besides,
HCF effectively mitigates the attack asymmetry between
attackers and victims, where victims can easily capture
the legitimate IP2HC mapping to conduct spoofed packet
filtering while the attackers are nearly impossible to know
the mapping between arbitrary IP address and its hop count
to the victims. In particular, from the points of view of
victims, they can easily infer the hop-count information by
subtracting the final TTL from the initial TTL at the arriving
place. According to [32], most modern OSes use only a small
set of selected initial TTL values, such as 30, 32, 60, 64, 128
and 255. As almost all the hosts in the Internet are apart by
less than 30 hops, one can determine the initial TTL value
of a packet by selecting the smallest initial TTL value in the
set that is larger than its final TTL. While for attackers, since

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

3

Table 1: Comparison of HCF, middlebox-based HCF and
NETHCF. Y for yes, N for no, U for uncertainty.

HCF Middlebox-
based HCF NETHCF

Bandwidth waste Y N N

Deployment redundancy Y N N

IP2HC slow-setting-up Y N N

Low packet processing
capability U Y N

High latency and jitter,
poor performance isolation U Y N

1 2 3 4 5 6 7
Time (s)

0
8

16
24
32
40
48
56
64

Co
nt

ro
l t

ra
ffi

c
ra

tio
 (%

)

attack starts

Tripod
StatelessNF
FTMB

Figure 2: Bandwidth waste of the original HCF.

the hop-count information is deeply rooted in the Internet
routing infrastructure and hop-count values is highly di-
verse, it is nearly impossible for them to maintain consistent
hop-count values with random spoofed IP addresses. These
basic observations guarantee the effectiveness of the HCF
scheme.

2.2 Problem Statement
Existing HCF implementations are all located at the end
hosts. Especially, the original paper [5], [6] implements the
HCF inside the Linux kernel and integrates it with the
network stack. However, under the requirements of mod-
ern distributed systems and data centers, there are several
practical problems, as we summarize in Table 1.

First, existing HCF suffers from bandwidth waste.
Spoofed IP traffic cannot be filtered until it arrives at the
targeted end hosts, which still saturates the bandwidth
resource of the victim networks and potentially results in
collateral damage. In the data centers nowadays, besides the
workload traffic from the Internet (i.e., Internet traffic), there
is also west-east traffic across different servers (e.g., inter-
service traffic, control traffic) [33], [34], [35], [36], [37]. To il-
lustrate this, we select three gateway systems including Tri-
pod [37], StatelessNF [35] and FTMB [36] as representatives.
In these gateway systems, each server runs some network
functions (NF) and NF states are replicated among different
servers via control traffic to maintain high availability. The
HCF kernel module is deployed on each server. We use
a large number of mice flows with spoofed IP addresses
to attack these gateway systems. When the spoofed traffic
arrives, as we can see from Figure 2, although each server
can filter most spoofed packets, these packets have entered
the network and occupied the network bandwidth already,

Table 2: Resource consuming of the original HCF.

Traffic Load 25% 50% 75% 100%

CPU 46.31% 69.75% 99.64% 139.51%

DRAM 1.98GB 1.98GB 1.98GB 1.98GB

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (min)

10k

20k

30k

40k

50k

Si
ze

 o
f I

P2
HC

 ta
bl

e Ideal for network
4 End-host
8 End-host
12 End-host
16 End-host
24 End-host

Figure 3: Slow setting-up of the original HCF.

leading to extra network congestion and additional packet
losses, which compromises the availability of these gateway
systems significantly.

Second, existing HCF is deployed on each end host to
conduct spoofed IP packet filtering, which not only leads
to deployment redundancy but also consumes the precious
general computation resources (e.g., CPU, memory) of end
hosts. If these resources are saved, more tasks can be con-
ducted. We measure the resource consumption of the HCF
kernel module on the server, and show the results in Table 2.
The server is equipped with a 40Gbps NIC and several CPU
cores each with a minimum frequency of 1.2 GHz and a
maximum of 3.2 GHz. When the NIC load is 50%, the CPU
clock frequency has reached the maximum value. When the
NIC load is 75%, the HCF kernel module (excluding the
normal protocol stack) fills up one CPU core. In addition, the
HCF kernel module also requires 1.98 GB memory to store
the IP2HC table. Note that each server has to be equipped
with the full HCF kernel with same CPU and memory
consumption, which is pretty redundant.

Third, with the rapid growth of network bandwidth,
modern data centers often use load balancing to distribute
the large volume of traffic to a cluster of servers (i.e., from
Virtual IP (VIP) to Direct IP (DIP) mapping) [33], [34], [9].
This results in that each end host (i.e., DIP) can only see
a portion of incoming traffic, which makes setting up a
full IP2HC mapping table extremely slow and postpones
the time of HCF to take effect. We replay an Enterprise
traffic trace from CAIDA [38] and simulate different DIP
numbers to see how this affects the IP2HC mapping table
setting up speed. As shown in Figure 3, the blue dotted line
indicates the ideal IP2HC setting-up of the entire network
while the remaining solid lines indicate the IP2HC setting-
up on each end host when the traffic is load-balanced to
different numbers of hosts. Obviously, as the number of
hosts increases, the speed of setting up a IP2HC table on
the host becomes slower and slower, which postpones the
time for HCF to take effect significantly.

An intuitive solution to resolve the headaches above is to
implement HCF in servers and make them stand as middle-

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

4

Switch
Fabric

Ingress
Pipelines

Egress
Pipelines

Ports

Packet Packet Header / Metadata,
Registers

IP2HC
MAT

Statistic
Mat

Routing
MATTCP

Monitor
MAT

Stage
1

Stage 2 Stage
N

Match Action

src IP = 10.0.0.0 / 24 read_hc_with_index (0)

src IP = 192.168.0.5 / 32 read_hc_with_index (1)

… …

src IP = 192.56.1.0 / 24 read_hc_with_index (N - 1)

(a) Switch data plane architecture (b) Pipeline architecture

(c) Match-Action Table architecture

Figure 4: Programmable switch data plane.

boxes. However, software-based HCF has two fundamental
limitations. First, processing packets in software limits ca-
pacity, usually at ∼10 Gbps and ∼M packets per second [39].
We can scale out the packet processing capacity by adding
more servers, but doing so raises costs and operational
complexity. For example, handling a typical attack traffic
volume today (∼Tbps) [40] requires hundreds of servers,
which are both costly and difficult to manage. Second,
processing packets in software incurs high latency and jitter,
with poor performance isolation. Software processing adds
a latency of 50us to 1ms when handling as little as 100K
packets per second [41], [9], which is unacceptable for many
latency-sensitive applications [11], [12] in data centers today.
When software experiences a flash crowd, legitimate traffic
served by the server also experiences increased delay, even
unexpected packet drops, which make matters worse.

2.3 Programmable Switches
Recent trends in Software-Defined Networking (SDN) have
raised programmable switching ASICs [42], [7], [43] and
related domain-specific languages (e.g., P4 [44]) to extend
the networking programmability from the control plane
to the data plane. Compared to traditional fixed-function
switches, the emerging programmable switches offer flex-
ible programmability without sacrificing any performance,
even with same power consumption and price [7]. The new
hardware provides unprecedented opportunity to overcome
the shortcomings of the original HCF design.

There are multiple ingress and egress pipelines in pro-
grammable switches, each with multiple ingress and egress
ports (Figure 4(a)). When a packet reaches one of the ingress
ports, it is first processed by an ingress pipeline, then
queued and switched to one of the egress pipelines to be
processed, and finally emitted to a specified egress port.
Inside a pipeline, packets are processed sequentially by each
stage (Figure 4(b)), which has its own dedicated resources,
including match-action tables and registers. Match-action
tables are applied to process packets by matching certain
header fields or metadata of the packet and performing

actions (e.g., modifying header fields/metadata, read/write
registers or drop packets) according to the matching results
(Figure 4(c)). Registers are used to store necessary data or
intermediate states to realize stateful packet processing.

With programmable switches and domain-specific lan-
guages like P4 [44], developers can customize their data
plane. Programmers typically write P4 programs to define
packet headers, build packet processing graphs, and specify
the match fields and actions of each match-action table.
The compiler provided by switch vendors can compile the
program to binaries and generate interactive APIs. The
binaries are loaded into the data plane with corresponding
tools, and the APIs are used by control plane applications to
interact with the data plane.

The programmable switching ASICs and P4 language
make it straightforward to implement custom terabit packet
processing devices, as long as the defined logic can be fitted
into the match+action model of switching ASICs. Develop-
ers need to carefully design the processing pipelines of their
programs to meet the resource and timing requirements
of switching ASICs. The major constraints of the current
switching ASICs include [45], [10], [46], [47]: 1) the number
of pipelines, and the number of stages and ports in each
pipeline; 2) the amount of TCAMs (for wildcard and prefix
matching of match-action tables) and SRAMs (for prefix
matching and registers) that each stage can access; 3) read-
ing and writing to registers must satisfy some restrictions,
i.e., a program can only access a register array from tables
and actions in the same stage; all registers in a stage must be
accessed in parallel; each register array can only be accessed
once per packet, with a stateful ALU which conducts simple
function, such as simultaneous read and write, conditional
update, and basic mathematical operations.

To conclude, while the programmable switching ASICs
have their own limitations in the computational model
and on-chip resources, they can process packets with high
throughput, low latency and jitter, and nearly perfect perfor-
mance isolation, which provides an unprecedented oppor-
tunity to move toward a better HCF. We must get around
these limitations and make some clever designs to achieve
our goal: serving the legitimate traffic with low latency and
filtering the spoofed traffic effectively.

3 OUR APPROACH: NETHCF
As discussed above, recognizing the problems of HCF and
identifying the opportunities with programmable switch-
ing ASICs, we propose NETHCF, an in-network line-rate
spoofed traffic filtering system.

3.1 NETHCF Overview

While the on-chip memory size (TCAM and SRAM) in
the switching ASICs (50-100MB [9]) has grown rapidly in
recent years, it is still challenging to store the full IP2HC
mapping table directly in the switching ASICs. A typical
IP2HC mapping entry should store the mapping from IP
(32 bit) to hop-count (5 bit), thus simply storing the entire
IP2HC mapping table requires at least 232 × (32 + 5) bits
(∼10 GB) in the switching ASICs. An intuitive approach
to resolve it is to store a small hash of the match field

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

5

IP2HC
Inspecting

TCP Session
Monitoring

Data Plane

Cache

Mirror
Data Plane Handler Control Plane

Cache
Statistics

L2/L3
Routing

IP2HC
Mapping

IP2HC
Statistics

Cache
Updating

CPU

Figure 5: NETHCF logical architecture.

(IP). However, on one hand, although we can take various
techniques to mitigate the impact of hash collisions (e.g.,
SilkRoad [9]), it is still impossible to eliminate all the hash
collisions thus the disruptions of legitimate flows will occur
frequently. And most malicious flows do not strictly obey
the TCP state transition map, this collision problem will
become much worse. On the other hand, even with hash
compression, storing all the IP2HC mapping entries is still
difficult1. As a result, only a small portion of the IP2HC
mapping table can be stored, and dynamic updates have to
be taken to adapt to the traffic dynamics [48], which will
lead to a dilemma (drop/pass) during attacks when the
incoming packet cannot find its IP in the IP2HC mapping
table.

Instead of accepting this apparent compromise, we ob-
serve network traffic has a heavy tail nature that a small
portion of IP2HC mapping entries usually serve the vast
majority of the legitimate network traffic [49], [50], [51],
[52]. Therefore, as shown in Figure 5, we decouple the
existing HCF into two parts logically, an HCF cache at the
data plane (programmable switching ASICs), and an HCF
mirror at the control plane (general computation resources,
such as server clusters). The data plane cache serves for
most active and legitimate IPs at line rate, and the control
plane mirror handles the remaining IPs with its complex
logic, maintains the IP2HC mapping table, and adjusts the
state of NETHCF to adapt to network dynamics. These
two parts interact with each other through carefully de-
signed coordination mechanisms to achieve both the advan-
tages of programmable switching ASICs (high performance)
and general computation resources (high flexibility) while
avoiding the shortcomings of them.

The data plane cache handles the most frequent IPs
and reports the packets whose IPs are not in the switching
ASICs to the control plane mirror. It mainly consists of three
new modules2, an IP2HC Inspecting module which stores
the hottest IPs of the whole IP2HC mapping table and
inspects the validity of these IPs at line rate, a TCP Session
Monitoring module which captures the legitimate hop-count
changes and updates these IP2HC entries if necessary, and a
Cache Statistics module which maintains a real-time statistic
to count the counters for each cached IP2HC mapping
entry and reports hot entries to the control plane for cache
updating. As a complementary part to the data plane cache,

1. Silkroad [9] compresses both match field and action data of each
entry, and they can only store ∼10M entries. This number is still far
away from the whole IP space (232), even with IP address aggregation.

2. In NETHCF, L2/L3 Routing module is directly inherited from the
traditional switch, and we omit its detail here.

IP Prefix / 24

…

166.111.8.

166.111.9.

…

0/24

0/25

128/25

0/26

64/26

128/26

192/26

. . .

. . .

..
.

..
.

0/32

1/32

255/32

254/32

129/32

128/32

Active Flag: False
Hotness: 6

Hop-Count: 10

Active Flag: True
Hotness: 14

Hop-Count: 10

Active Flag: False
Hotness: 8

Hop-Count: 10

Figure 6: IP2HC mapping table organization.

the control plane mirror maintains a global view for IP2HC
mapping and IP2HC statistics. It also plays an important
role in aggregating IP2HC entries and handling the packets
whose IPs are missed in the cache. More importantly, it is
responsible for adjusting the posture of NETHCF to adapt
to network dynamics, i.e., routing changes, IP popularity
changes, and network activity dynamics.

When NETHCF starts to run for the first time, network
operators should collect traces of its clients to obtain both
IP addresses and the corresponding hop-count values. This
initial collection procedure should be long enough to have
a high covering rate for the whole IP space, and the con-
crete duration depends on the amount of daily traffic the
victim is receiving. For example, for popular sites such as
facebook.com, a few days could be sufficient, while for
lightly loaded sites, a few weeks might be more appropri-
ate. After the initial collection procedure, the control plane
mirror organizes the IP2HC mapping table in a binary tree
and aggregates the entries with an efficient aggregation
algorithm (§3.2). Meanwhile, the control plane mirror is
supposed to constantly insert a number of legitimate IP2HC
entries into the data plane cache until the number of entries
in the data plane cache becomes relatively stable (the data
plane cache is full).

After this initialization, NETHCF would continue
adding new entries to the IP2HC mapping table when pre-
viously unseen IP addresses are sighted (by sending packet
digests to the control plane mirror). More importantly, at
this relatively stable running state, NETHCF needs to adapt
to network dynamics timely and effectively(§3.3). First,
NETHCF should capture legitimate hop-count changes and
update the corresponding IP2HC mapping entries resulted
from end-to-end routing updates in the Internet. Second,
NETHCF should accommodate to the dynamic incoming
traffic to ensure that the hottest IPs are always stored in the
cache. Third, to minimize collateral damage and adapt to
attack activities, NETHCF has two running states, a learning
state when packets with wrong hop-count are simply passed
and a filtering state when these packets are discarded. These
two states are switched according to the number of spoofed
packets which fail at IP2HC checking in a period of time.

3.2 IP2HC Mapping Table Organization

Although we can store one IP2HC mapping entry for each
IP address in the switch ASICs, this would consume a
large amount of switch memory and further exacerbate the
memory shortage. We observe that many IP addresses with
the same prefix share the same hop-count values, especially

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

6

for a subnet. Therefore, we aggregate the IP2HC mapping
table to utilize the limited on-chip memory more efficiently.
More importantly, this will help quickly build a complete
IP2HC mapping table with the hop-count value of one IP
address from each subnet.

In the control plane mirror, to achieve efficient and
correct aggregation, we represent the IP2HC mapping table
in a binary tree, as shown in Figure 6. Each leaf in the
tree represents a valid IP address, while the other nodes
represent a specific IP address prefix. Each node in the
tree has three attributes, indicating whether it is active, its
hotness and its hop-count value. We define the active node
as a basic entry for the IP2HC mapping table, and only the
active nodes will be stored in the data plane cache. Since it is
common that a 24-bit address prefix is allocated to the same
physical network, we terminate the IP2HC mapping table
aggregation at the 24-bit address prefix, i.e., the depth of the
binary tree is limited to 8, and the leaves of the tree represent
the 256 valid IP address inside a 24-bit address prefix. Our
algorithm runs iteratively across the tree. In each iteration,
if two sibling nodes share the common hop-count value,
we aggregate them into their parent node with the same
hop-count value. To accelerate the building of the IP2HC
mapping table, we also aggregate the node whose sibling
node is empty. Then the parent node will be selected as
the active node for its children node(s), assigned with the
same hop-count value. The hotness of a parent node is the
sum of all its children nodes’ hotness. In this way, we can
find the largest possible aggregation for a given set of IP
addresses. For example, the IP address range 166.111.8.128
to 166.111.8.255 can be aggregated into 166.111.8.128/25
prefix if all these IP addresses share the same hop-count
value. Note that there is no dependency between different
active nodes so that we can store some of them in the data
plane cache independently. In the data plane cache, to store
the IP2HC mapping entries, we design a match-action table
where the match field stores the IP/IP prefix and the action
field stores the corresponding hop-count value.

3.3 Adapting To Network Dynamics

NETHCF should accommodate to the end-to-end routing
changes in the Internet where hop-counts change legiti-
mately, adapt to the traffic dynamics where the popularity of
IPs changes over time, and minimize the potential collateral
damage where legitimate packets go through the control
plane unnecessarily. In the first case, NETHCF should cap-
ture the up-to-date legitimate IP2HC changes timely and
update the entries at both the data plane cache and the con-
trol plane mirror immediately. In the second case, NETHCF
should capture the IP access statistics and change the IP2HC
mapping entries in the data plane cache to ensure cache
hotness. For the last case, we propose two running states to
make NETHCF adapt to the attack activities.

3.3.1 Capturing legitimate hop-count changes
Although hop-count has been proved to be pretty sta-
ble [53], [54], [6], there are still cases when hop-count may
change, such as routing instability and network reallocation.
These changes should be captured as soon as possible to
update the IP2HC mapping in both the cache and the mirror.

Algorithm 1: IP2HC Incremental Update Algo-
rithm
1 Function aggregate(ip2hc, startNode)
2 curNode = startNode
3 while True do
4 sibNode = getSiblingNode(ip2hc, curNode)
5 if sibNode == Null or sibNode.hc == curNode.hc

then
6 parNode = getParentNode(ip2hc, curNode)
7 if parNode == Null then
8 break

9 parNode.hotness = curNode.hotness +
sibNode.hotness

10 parNode.hc = curNode.hc, parNode.repF lag =
True

11 curNode.repF lag = False, sibNode.repF lag =
False

12 curNode = parNode

13 else
14 break

15 return

16 Function split(ip2hc, startNode, ipSrc, newHC)
17 curNode = startNode
18 while curNode.prefixLen < 32 do
19 nextBit = getBitOfIP (ipSrc, curNode.prefixLen +

1)
20 nextNode = getChildNode(ip2hc, curNode, nextBit)
21 otherNode = getChildNode(ip2hc, curNode,

nextBit⊕1)
22 otherNode.hc = curNode.hc, otherNode.repF lag =

True
23 nextNode.hc = newHC, nextNode.repF lag = True
24 curNode.repF lag = False, curNode = nextNode

25 return

26 Function incrementalUpdate(ip2hc, ipSrc, newHC)
27 currentNode = indexWithIP (ip2hc, ipSrc)
28 if currentNode.prefixLen == 32 then
29 currentNode.hc = newHC
30 aggregate(ip2hc, currentNode)

31 else
32 split(ip2hc, currentNode, ipSrc, newHC)

33 return

Update in the control plane mirror. First, the new IP2HC
mapping information should be reported to update the
IP2HC mapping table in the control plane mirror imme-
diately. Cache-missed packets are transferred to the control
plane mirror in the filtering state directly. While in the learn-
ing state, to reduce the communication overheads, we only
deliver the packet digests, i.e., IP address, IP TTL, and TCP
flag, instead of the whole packets. For cache-hit packets,
the updated legitimate hop-count values are generated from
the TCP Session Monitor module and are delivered to the
control plane mirror directly. Then the control plane mirror
would conduct incremental update for the IP2HC mapping
table. As shown in Algorithm 1, if the new IP2HC mapping
corresponds to an active node (32 bit prefix), update it
directly and aggregate it with its sibling node iteratively
when possible (Function aggregation()). Else, split the
tree and re-select the new active nodes (Function split()).
Update in the data plane cache. Second, it is also essential to
timely update the hop-count of the IP2HC mapping entries
in the data plane cache. A strawman solution is to report
the TCP handshake packets to the mirror and to update the

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

7

HC Inspect

Entry Index

TTL Compute
HC

Saved HC1 in
IP2HC

HC2

ResultHC2

Valid Bit

HC Bit

AN
D

O
R

CM
P

IP

Temporary Bitmap

Valid Bit Array

TCP Session Monitor

0

1 2

State
Transition

SYN

SYN ACK

Ack=Seq+1

Mismatch

Mismatch Mismatch

Update HC

Figure 7: TCP Session
Monitor (learning state).

HC Reinspect

Entry Index

Result

Packet
HC

Valid Bit

HC Bit

A
N

D

IP

Temporary Bitmap

Valid Bit Array

Figure 8: HC Reinspect
table.

hop-count of the IP2HC mapping entry with issued control
messages, just as the way to insert it initially. However,
entry insertion with the control plane is not atomic, and
it takes a few milliseconds [9] (even tens of milliseconds
when the control plane is at another server). This indicates
that an IP address may have many packets arrived before
the control plane completes entry insertion into the cache,
and these packets would be classified as spoofed packets. If
at the filtering state, NETHCF would discard these packets
expectedly, which would cause a significant performance
penalty.

To solve this problem, NETHCF introduce the TCP
Session Monitoring module in the switching ASICs to cap-
ture the legitimate hop-count changes. Under normal cir-
cumstances (learning state), TCP Session Monitor module
monitors the cache-hit TCP handshake packets with in-
consistent hop-count values. Only packets that follow the
strict TCP state transition map (Transition State Array) and
correct Seq/Ack number transitions (Seq ack number Ar-
ray) are accepted as legitimate TCP connections (Figure 7).
When attacks happen (filtering state), this becomes much
more complicated. If we simply let pass all the hop-count
inconsistent TCP SYN packets, then all TCP SYN flood
packets [55] will also pass the HC checking. In contrast,
if we drop these TCP SYN packets, these packets will not
get responses (TCP SYN-ACK packets) from the servers to
finish their three handshakes, which would stop us from
monitoring new TCP connection establishment procedures
and capturing legitimate hop-count changes. To resolve this,
TCP Session Monitor module changes the posture of itself
to a SYN Cookie based session monitoring mechanism. As
shown in Figure 9, for a hop-count inconsistent TCP SYN
packet, TCP Session Monitor module responses a TCP SYN-
ACK packet to wait for the TCP ACK packet. If the replied
TCP ACK packet has a correct Seq/Ack number, the module
would reply a TCP RST packet to force the client to re-
establish the connection and mark this session’s Transition
State flag (Transition State Array). Then this connection can
be monitored as in the normal circumstances.

After the TCP Session Monitor module, as shown in
Figure 8, we also introduce an HC Reinspect table, which
has a Valid flag for each IP2HC mapping entry (Valid Array)
and a Temporary Bitmap to store the temporary legitimate
hop-count values. The TCP Session Monitoring module
upstream generates an updated legitimate hop-count value
and encapsulate it into metadata to deliver to the subse-
quent stage. The subsequent stage at the HC Reinspect table

Client

Switch

Server

SYN

SYN-ACK
w/ cookie

Cookie
w/o state

ACK w/
cookie+1

Verify
and flag

RST SYN

SYN-ACK

ACK

Figure 9: Switch-based TCP SYN Cookie workflow.

would update the corresponding IP2HC mapping entry’s
valid flag as invalid and record the new hop-count value v in
the Temporary Bitmap immediately. As shown in Figure 8,
the Temporary Bitmap has N rows and 32 columns. To
reduce hash collision, inspired by bloom filter, we use k
hash functions to map the IP address to different rows,
r1, r2, ..., rk . Then the r1, r2, ..., rk-th row and v-th column
of the Temporary Bitmap is set as 1. For a packet whose
matching entry is invalid, if its hop-count value matches
the Temporary Bitmap, i.e., the bits in all the hashed rows
and hop-count value’s column are 1, NETHCF regards it as
valid, or vice verse. In this way, we achieve the line-rate hop-
count update in the switching ASICs, avoiding the potential
race conditions and ensuring the per-IP packet-processing
consistency. Note that the hop-count is pretty stable, these
hop-count changing cases are rare, which indicates that
the row number N in the Temporary Bitmap and the size
of the TCP Session Monitor module could be very small.
And all the invalid IP2HC entries in the data plane would
be updated by the control plane in the upcoming update
period.

3.3.2 Capturing IP popularity changes

To cope with traffic dynamics where IP popularity changes,
the mirror of NETHCF should periodically update the cache
with the hottest IP2HC mapping entries. Netcache [10]
provides an insightful approach to realize a similar goal.
The data plane selects and reports the hot keys from the un-
cached entries with a heavy-hitter detector, and the control
plane compares the hits of the heavy-hitter detectors with
the counters of the cached entries to evict less popular keys
and insert more popular keys. However, this methodology
does not apply to NETHCF, since NETHCF faces a more
adversarial scenario. Simply adopting this approach would
lead to fake hot phenomenon, and the legitimate hot IPs in
the data plane would be replaced by the aggressive fake IPs
accessed deliberately by the attackers, which would degrade
the performance of the legitimate IPs and packets.

We observe that the main reason for this fake hot phe-
nomenon is that the cache does not have a full view for the
uncached IP2HC mapping and cannot determine whether
the uncached IP access is legitimate or not, which make
it prone to be tricked. As a result, as shown in Figure 10,
rather than providing a heavy-hitter detector for uncached
IPs/IP prefixes in the data plane cache, we deliver the
packets whose IPs/IP prefixes are uncached to the control
plane mirror for processing. Since the control plane mirror

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

8

Mirror

Cache

Cache
Lookup

Pkt
.IPSrc

cached

Control
message

Evict &
Insert

IP Hop-
Count

Counter

… … …

Report Bit Array

hot

Report

Unhot Cached
Entry Bit Array

not cached

Pkt / Pkt.digest
(IP address, IP TTL and TCP flag)

Figure 10: Cache updating mechanism.

has the full views for the whole IP2HC mapping, it can
easily distinguish the fake ones from uncached legitimate
IP accesses. In particular, in both cache and mirror, we
maintain a hit counter (i.e., hotness) for each legitimate IP
(Counter Array) and a total unhit counter for all the packets
that fails IP2HC checking (Spoofed-packet Counter). To reduce
the communication cost between the data plane cache and
the control plane mirror, only digest (IP address, IP TTL,
and TCP flag) instead of the whole packet is delivered to
the control plane mirror at the learning state. While at the
filtering state, the cache send the whole packet for further
IP2HC checking and pass/drop decision. For the control
plane mirror, to identify the hottest IPs and update the
cache accordingly, it must obtain the statistics of the cache. A
straightforward approach is to adopt the classic poll mode
of SDN to fetch all these data plane counters directly. As
there are hundreds of thousands of entries in the cache,
it is too expensive. To reduce this overhead, we amortize
the overhead across a period: when the counter of an entry
exceeds a preset threshold, the cache reports the IP/IP prefix
of the entry to the mirror. This can transform the original
one-time poll cost into a series of small push operations. In
each period, to remove duplicate hot entry reports to the
mirror, a Report Bit Array is attached behind in the data
plane, which guarantees that each hot entry is reported
at most once. After the control plane obtains all the hot
entries from the data plane cache, it adopts the thought of
complementary set and screens out the unreported entries
of the cache, which are essentially the cold entries that
have not been visited in the last period. Then the control
plane mirror select the hottest entries from all uncached
legitimate IPs/IP prefixes, and update these data plane
cold entries with the selected IPs/IP prefixes. Note that the
number of cold entries is relatively small, as the cache is
updated periodically. Besides, based on our experiments on
the Barefoot Tofino switch, the table entry update capability
can reach as high as 160K entries per second. The small
cold entry number and high entry update capability jointly
demonstrate that the cache update is not a heavy burden
under our circumstances. With all the techniques above, the
control plane achieves the correct popular-IP capturing and
resilient hot-entry updating.

3.3.3 Running States of NETHCF
Even though we are trying hard to offload as many IP2HC
mapping entries as possible into the switching ASICs, it
is still impossible to store all of them. As a result, cache-

missed packets must be directed to the mirror for deci-
sion (pass/drop), which would cause the additional delay
for these packets. We observe that the attack scenarios
only occupy a small portion of all network activities, thus
NETHCF should not be active at all times. Therefore, we
introduce two running states for NETHCF to make it adapt
to network activity dynamics: the learning state which cap-
tures the legitimate changes in hop-count and detects the
number of spoofed packets, and the filtering state which
actively discards the spoofed packets with wrong hop-
counts. Besides, these two running states can also reduce
the unnecessary SYN Cookie reset for legitimate flows in
the normal scenarios and also give operators freedoms to
choose the running state of NETHCF as they desire. By
default, NETHCF stays at the learning state and monitors
the changes of hop-count without dropping packets. Upon
detecting a large number of spoofed packets in a specific
period (larger than threshold T1), NETHCF switches to the
filtering state and discards the spoofed packets. NETHCF
stays at the filtering state as long as a certain number of
spoofed packets are detected. When the number of spoofed
packets decreases and is less than another threshold T2,
NETHCF switches back to the learning state. Note that T2
should be smaller than T1 for better stability, which can
avoid the unnecessary fluctuates between two states. The
filtering accuracy of NETHCF depends on the setting of T1
and T2.

In the filtering state, we assume NETHCF has the whole
IP2HC mapping table for the complete IP addresses in the
mirror. However, this assumption may not stand in reality.
There are always new requests from unseen IP addresses,
regardless of how well the IP2HC mapping table is initial-
ized or kept up-to-date. To defend against malicious traffic
using unseen IP addresses in the filtering state, we must
discard these requests that have no corresponding entries in
the IP2HC mapping table under attacks. While undesirable,
only in this way could NETHCF ensure legitimate packets
from known IP addresses are still served during an attack.
Certainly, such collateral damage could be made extremely
low if the IP2HC mapping table becomes more and more
complete (i.e., NETHCF takes a long period of time at the
learning state).

3.4 Putting All Together: NETHCF Structure

Data plane cache pipeline. The data plane cache is the core
component of NETHCF. It mainly realizes (1) an IP2HC
Inspecting module to inspect the validity of packets, (2) a
TCP Session Monitoring module to capture the changes of
legitimate hop-count and update the hop-count values at
line rate, (3) a Cache Statistic module to provide essential
legitimate IP hit and spoofed IP hit statistics for cache
update and running state switching. The overall structure
of the cache is shown in Figure 11. The IP2HC Inspecting
module is located at three separated stages of the pipeline.
The IP2HC Lookup table first matches on the IP address and
gives the corresponding hop-count value and entry index in
the action data. The HC Inspect table calculates the packet’s
hop-count value and compare it with the prefetched hop-
count value from the IP2HC Lookup table. In the HC Rein-
spect table, the Valid Array (with the same size of IP2HC

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

9

IP2HC
Lookup

Hit

Miss

Match Action

Forward
packets

Generate
digests

Control Plane
Cache

Updating
State

Switching

IP Entry
Index

Learning

Filtering

StatisticsUpdate
HC

Pass

Pass

Drop

Pass

Filtering

Learning

HCF
State
Check

Register

Right

Wrong
TCP

Session
Monitor

Right

Wrong PassWrong

Right

Cache
Statistics

Pass

HC
Inspect

HC
Reinspect

Packets

Figure 11: The workflow of the data plane cache.

lookup table) is attached behind to indicate whether the cor-
responding entry is still valid. Along with the Valid Array,
there is a Temporary Bitmap, which is used to record the valid
hop-count values for updated IPs/IP prefixes (Figure 8).
The TCP Session Monitoring module consists of two register
arrays, one for TCP transition state (Transition State Array)
and the other for TCP seq/ack number (Seq ack number
Array) (Figure 7). Only flows which strictly conform with
TCP state transition map are allowed to update the Valid
Array. The Cache Statistics module is composed of a Counter
Array, a Report Bit Array and a Spoofed-packet Counter. When
a packet hits the cache and passes the hop-count checking,
the Counter Array increases the value in the corresponding
entry index location by one. If this value is above the
threshold configured by the control plane, this index will
keep being marked as hot before the counters are refreshed
by the control plane. The Report Bit Array is used to remove
the duplicate reports. If the hop-count checking fails, the
Spoofed-packet Counter increases by one. The Spoofed-
packet Counter is reported to the control plane periodically.
Control plane mirror. The control plane mirror serves as a
complementary part for the data plane cache, thus it realizes
all the packet processing logic as the cache does, except
that this view is global. More importantly, it maintains the
binary tree based data structure to record the aggregated
IP2HC mapping table. Besides, it maintains a unique index
for each IP2HC mapping entry, which is used to index the
valid array, the counter array and the report bit array in
the data plane cache. It also maintains an IP2HC mapping
entry management table, which records whether each active
node is in the data plane, its counter, and a heap pointer. We
maintain a heap to quickly find the hottest entries in the un-
cached active nodes. There is also a spoofed-packet counter
in the control plane mirror, which records the number of
packets failing at the hop-count checking to adjust the state
(learning/filtering) of NETHCF.

4 DISCUSSION

NETHCF is used to filter spoofed IP packets with incon-
sistent hop counts, which shares a similar threat model
as the origin HCF scheme [6]. From the algorithm level,
it also shares the similar limitations as the original HCF
scheme, such as it is difficult to cope with Network Address

Translator (NAT) scenarios, where multiple hop-count val-
ues correspond to the same IP address. This is becoming
much better as IPv6 is being deployed more and more
widely recently [56] (The TTL field in IPv4 is renamed as
Hop Limit field in IPv6), and our cache-based NETHCF
will become more and more necessary as the address space
of IPv6 is much larger than that of IPv4. We also do not
talk much about the robustness of NETHCF against various
evasion techniques, since they have been broadly discussed
in the original paper. NETHCF mainly improves the per-
formance of the original end host based HCF scheme with
new system-level designs, so we mainly discuss the unique
system-level attributes, which have not been covered before.
Deployment mode. In real-world deployment scenarios,
the spoofed traffic is usually dispersed and high-volume,
which may exceed the capability of one server and suffer
from denial-of-service attacks. As a result, the control plane
mirror is usually deployed as a cluster of servers [57],
which communicate with the switch control plane agent to
update the entries in the data plane cache. Each server in
the cluster would undertake a portion of uncached spoofed
IP traffic via the data plane switch ports, further achieving
high scalability. Besides the control plane scalability, the data
plane cache can also be deployed in a set of programmable
switches. When single switch cannot provide sufficient stor-
age ability, we can employ multiple switches in a pipeline to
accommodate more legitimate IP2HC entries. On the other
hand, if NETHCF wants to support higher bandwidth, we
can deploy several switches in a parallel way and distribute
the incoming traffic evenly to them. Furthermore, to be more
general, pipeline extension and parallel extension can be
combined together to provide the desired scalability.
Resource constraints. During our engineering with
NETHCF, we find the main bottleneck does not come
from the throughput. Instead, the memory space is easy
to reach the upper limit. Fortunately, the recent trends in
programmable switches are leveraging external DRAM in
servers to alleviate the resource shortage [58], which may
help us cache more (even complete) IP2HC mapping entries
in the data plane, and mitigate this potential attack greatly.
Relationship with SYN Cookie. SYN Cookie is an effective
approach for end hosts to prevent TCP SYN flooding attacks
initially, which has also evolved into various network-based
SYN Proxy mechanisms [59], [60]. Comparing with SYN

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

10

Table 3: Replayed traffic workloads.

Traffic Avg. Flow Length Avg. Packet Size Size

1 BigFlow 19.0 packets/flow 451B/packet 2.50GB
2 SmallFlow 3.3 packets/flow 291B/packet 1.60GB
3 Enterprise 9.5 packets/flow 622B/packet 1.74GB

Cookie, NETHCF can filter all kinds of spoofed IP traffic
effectively, not limited to TCP protocol. Although NETHCF
leverages SYN Cookie to prevent itself to suffer from TCP
SYN flooding, it extend its defense capability to other kinds
of spoofed IP traffic, especially ICMP and UDP protocols.

5 IMPLEMENTATION

We have implemented an open source prototype of
NETHCF, including all components of the cache and the
mirror described in §3. The source code is publicly available
here [13].

The cache is implemented with ∼1K lines of P4 [44] code
and is compiled to Barefoot Tofino ASIC [7] with Barefoot
Capilano software suite [61]. The IP2HC Lookup table has
256K entries totally, with a sub-table to store aggregated
entries and another sub-table for 32-bit un-aggregated IP
address. Correspondingly, the size of the Valid Array is also
256K. Since legitimate hop-count changes happen rarely,
we set the row number of Temporary Bitmap as 1024 and
the hash function number k as 2. For the Cache Statistic
module, the Counter (8-bit) Array and the Report Bit Array
is also 256K. The TCP Session Monitoring table contains two
register arrays, one for Transition State (2-bit) and another
for TCP seq/ack number (4-byte), each with 65536 slots.
All of these above result in only a small portion of TCAM
and SRAM occupation (§6.4), leaving enough space for
traditional network processing. For TCP Session Monitoring
module, we use built-in hash functions in P4 on both 5-tuple
and reverse 5-tuple3, and perform XORing on two hash val-
ues to represent a bidirectional connection. Furthermore, we
reuse the L2/L3 Routing module from traditional switches
and just add pass/drop decision function for it.

For ease of prototype, the mirror is written with ∼3K
lines of Python code. It can be deployed on one or more
servers with lightweight protocols (i.e., ZeroMQ [62]) to
communicate with the switch control plane agent. In future,
we plan to re-implement the control plane mirror with C-
based DPDK [63] to further improve the performance.

6 EVALUATION

Our evaluation seeks to answer the following key questions:

• How does NETHCF perform compared with the
original host-based HCF [6] (§6.2)?

• How effective are the techniques and optimization
we have designed in NETHCF (§6.3)?

• What are the micro-benchmark metrics of NETHCF
(§6.4)?

3. The 5-tuple means (ipSrc, ipDst, protocol, portSrc, portDst), and we
denote (ipDst, ipSrc, protocol, portDst, portSrc) as the reverse 5-tuple.

6.1 Experimental Setup

Our testbed is composed of one 3.3Tb/s Barefoot Tofino
switch (Wedge 100BF-32X) and three servers, each of which
is equipped with 12 Intel(R) Xeon(R) E5-2698 v4 CPUs and
128GB memory. These three servers are connected to the
switch via 40Gbps Intel XL710 NICs. In particular, one
server serves as the control plane mirror, one server runs an
Apache HTTP server with default settings, and one server
serves as a client or traffic generator, running wget, iperf
or tcpreplay tools. In our experiments, we reset bitmap
and all counters in the cache statistics module every three
seconds. Our workload traffic is collected from CAIDA [38],
including an Enterprise traffic trace (about 300K flows and
200K IPs), a BigFlow traffic trace (around 300K flows and
200K IPs), and a SmallFlow traffic trace (about 1500K flows
and 250K IPs), for an extensive evaluation on traces with
different characteristics (Table 3). Considering values of
hop-count follow a Gaussian distribution (µ = 16.5, σ = 4) in
reality[6], we generate spoofed traffic with hop-count of 16
to mimic a clever attacker, so that more attack packets may
happen to have the right hop-counts.

6.2 Performance Improvement

First, to show the effectiveness of NETHCF in filtering
spoofed traffic, we run wget to generate legitimate TCP
traffic and replay the spoofed traffic on the client side
simultaneously. Figure 12 shows the throughput at the client
side (top subfigure) and the server side (bottle subfigure).
As we can see from this figure, although the client side
launches a large number of spoofed packets, only very few
of them arrive at the server side. This is because NETHCF
detects the attack and switches to filtering state to adapt to
network attacks immediately. Compared with the original
HCF scheme, by pushing intelligence into the network,
NETHCF is able to prevent attack traffic from entering the
host network and preserve bandwidth for legitimate traffic.

Then, to show the setting-up speed of the IP2HC map-
ping table, we add another three servers loaded with origi-
nal HCF scheme and make the client replay the workload
traffic traces. We employ ECMP to distribute the traffic
to these four servers. The results for the three traces are
very similar, so we only show the result for the Enterprise
traffic. As shown in Figure 13, the IP2HC mapping table of
NETHCF is set up faster than that of HCF, since NETHCF
can view the full traffic space. Beside, the total size of
the IP2HC table on four hosts is much larger than that of
NETHCF, and plenty of identical entries exist in the IP2HC
mapping tables on these four end hosts, which also indicates
that NETHCF is more efficient in resource utilization.

6.3 Optimization Effectiveness

HCF scheme decoupling. To demonstrate the benefit of
decoupling the existing HCF scheme, we compare our
cache-based NETHCF with an intuitive approach, adopting
a hash-based compression to store a portion of IP2HC
mapping table in the data plane (hash-based NETHCF) [48].
We set the same switch memory for these two NETHCF
schemes and select the false negative as the metric, i.e., the
proportion of spoofed packets identified as normal ones.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

11

 0

 100

 200

 300
Sp

ee
d

(M
bp

s)

attack
starts

attack
stops

Client side

TCP flow Spoofed traffic

0 5 10 15 20 25 30 35 40
Time (s)

 0

 100

 200

 300

Sp
ee

d
(M

bp
s)

switch to
filtering state

Server side

Figure 12: Bandwidth saving with
NETHCF.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (min)

10k

20k

30k

40k

50k

Nu
m

be
r o

f e
nr

ie
s i

n
IP

2H
C

ta
bl

e

Switch
End-host 0
End-host 1
End-host 2
End-host 3

Figure 13: Setting-up speed of the
IP2HC mapping table.

Enterprise
Traffic

BigFlow
Traffic

SmallFlow
Traffic

50k

100k

150k

200k

250k

Nu
m

be
r o

f e
nr

ie
s i

n
IP

2H
C

ta
bl

e

Cache

Original IP2HC Aggregated IP2HC

0.0

20.0

40.0

60.0

80.0

100.0

Ca
ch

e
hi

t r
at

e
(C

HR
) f

or
 p

ac
ke

ts

Original CHR Aggregated CHR

Figure 14: Effectiveness of the IP2HC
aggregation mechanism.

0 4 8 12 16 20 24
Time(s)

0.0

0.2

0.4

0.6

0.8

Ra
tio

 o
f d

ro
pp

ed
 p

ac
ke

ts
 (%

)

attack starts

Enterprise traffic
BigFlow traffic
SmallFlow traffic
Line-rate hc update

Figure 15: Effectiveness of the line-rate
hop-count updating.

0 50 100 150 200 250 300 350 400
Time(s)

 0

 20

 40

 60

 80

 100
Ra

tio
 o

f h
ot

 a
nd

 le
gi

tim
at

e
IP

s i
n

ca
ch

e
(%

)

attack starts

NetHCF update
NetCache update
No update

Figure 16: Effectiveness of the
NETHCF cache update mechanism.

0 5 10 15 20 25
Time (s)

 0

 100

 200

 300

Sp
ee

d
(M

bp
s) attack

starts To cache

0 5 10 15 20 25
Time (s)

 0

 100

 200

 300

switch to
filtering
state To mirror

Enterprise traffic Spoofed traffic

Figure 17: Communication overhead
between cache and mirror.

Table 4: False negative comparison.

Approach False Negative

Hash-based
NETHCF

One Hash
Function 31.03%

Two Hash
Functions 27.87%

Three Hash
Functions 24.70%

Cache-based NETHCF 9.89%

Table 4 shows that cached-based NETHCF stands out with
much lower false negative, even though multiple hash func-
tions are employed to reduce the collisions for hash-based
approach. Although we can use more hash functions to fur-
ther reduce false negative, this would result in unacceptable
switch resource occupation, since each hash function has to
occupy one stage in the switch pipeline. Notice that ∼10%
of spoofed packets happen to have the same hop-count with
the packets from real IP addresses, which is the inherent
limitation of the HCF scheme itself. Besides the high false
negative problem, hash-based NETHCF also suffers from
a dilemma (drop/pass) during attacks when the incoming
packet cannot find its IP in the IP2HC mapping table. This
dilemma does not happen in our cache-based NETHCF,
since the control plane mirror has the full IP2HC view. In
conclusion, NETHCF can guarantee to filter the maximum
number of spoofed packets as the original HCF scheme.
IP2HC mapping table aggregation. We demonstrate the

effectiveness of the IP2HC aggregation technique in Fig-
ure 14. For the control plane mirror, aggregation signifi-
cantly reduces the number of IP2HC entries that need to be
maintained, saving considerable memory resources. More
importantly, for the data plane cache, aggregation allows
the cache to store hop-count values for more IP addresses
and improves the cache hit rate, leading to fewer packets
transferred to the mirror. Especially for the BigFlow traffic,
with aggregation, the size of IP2HC table becomes smaller
than the capacity of the cache, so the entire IP2HC table can
be put into the cache.

Adapting to legitimate hop-count changes. To show the
effectiveness of NETHCF in handling hop-count changes,
we analyze and compute the ratio of dropped packets at
the server side. As shown in Figure 15, those solid lines
represent the control plane hop-count update mechanism
with different traffic traces, and the dotted line represents
NETHCF which updates the hop-count values at line rate.
As we can see from this figure, when the attack starts
(filtering state), the control plane update strategy would
cause 0.2% packet losses because of temporary inconsistent
hop-counts (§3.3.1), while line-rate hop-count update of
NETHCF avoids this and keeps no packets dropped. In
comparison with our ICNP version [1], we redesign the
Temporary Bitmap from a 32-bit bit array into a N -row and
32-column bitmap, and use a bloom filter based mechanism
to index the corresponding hop-count values. Based on
our simulation, for packets with invalid IP2HC mapping
entries, under the current settings (k = 2, N = 1024), the false
negative reduces from 20% ∼40% to less than 1%.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

12

Table 5: Resource utilization.

IP2HC
Inspecting

TCP Session
Monitoring

Cache
Statistic Total

Computing
Tables 6.77% 6.25% 3.13% 16.15%
sALUs 2.08% 12.50% 4.17% 18.75%

HashBits 4.63% 3.41% 0.56% 8.59%
VLIWs 2.73% 2.73% 0.26% 5.73%

Memory
SRAM 15.57% 5.83% 1.98% 23.39%
TCAM 22.92% 0.70% 0.00% 23.61%

Adapting to IP popularity changes. To evaluate the ef-
fectiveness of the NETHCF cache update mechanism, we
replay the spoofed traffic and the Enterprise workload traffic
simultaneously under these three different cache updating
mechanisms, and select the percentage of legitimate and hot
entries in the cache as the metric. Figure 16 demonstrates
that the update mechanism of NETHCF performs well all
the time, while that of NetCache [10] falls short because of
fake hot phenomenon (§3.3.2) when the attack happens. This
indicates that NETHCF is adaptive to IP popularity changes
even in adversarial scenarios. If we do not update the cache,
just few entries are continuously hot for long connections
while most entries may not produce a match any more.

6.4 Micro Benchmarks
Resource utilization. Table 5 displays the resource usage
of NETHCF in our Tofino switch. As we can see, NETHCF
occupies less than 20% of computational resources, and less
than 30% of TCAM and SRAM. We have achieved signifi-
cant memory saving compared with our ICNP version [1],
which occupies one-third of TCAM and half of the SRAM.
This memory saving comes from the design of the IP2HC
Lookup table, which replaces the IP2Index Lookup table
and the Hop-Count Register Array previously. Note that
even with all the data plane components, NETHCF still
leaves enough space for traditional network processing, and
this can even be further optimized by more tuning.
Communication between mirror and cache. To show com-
munication between two parts of NETHCF, we replay the
Enterprise traffic as workload and initiate the attack at 10s.
We use the bytes of traffic transferred from the cache to the
mirror as the metric. As shown in Figure 17, in the learning
state (0∼10s), only minor workload traffic is steered from
the cache to the mirror. When the attack starts and NETHCF
switches to the filtering state (after 10s), a large portion of
spoofed traffic needs to be processed in the mirror. This is
because the IPs for most spoofed traffic are not stored in
the cache, so the spoofed traffic requires the involvement
of the mirror to conduct the filtering. Nevertheless, most
legitimate traffic is still processed in the data plane cache,
guaranteeing the low latency and line-rate for legitimate
traffic.
Process latency. Table 6 shows that NETHCF adds negligi-
ble latency for most legitimate packets under both states.
In particular, the extra delay of NETHCF for processing
packets in the cache is just tens of nanoseconds, while for
the mirror it needs hundreds of microseconds. Actually, in

Table 6: Latency overhead.

Processing Path Processing Latency

L2/L3 Routing 0.256 µs
L2/L3 Routing + NETHCF cache 0.347 µs
L2/L3 Routing + NETHCF mirror 272.983 µs

Original HCF 271.579 µs

a typical gateway (or ToR switch), 256K items are sufficient
to serve for almost all the concurrent legitimate IPs [9], and
the IPs forwarded to the mirror would most be unfamiliar
or malicious. Besides, this overhead only happens when
NETHCF is in the filtering state, i.e., under attacks, which
only occurs infrequently. In conclusion, the average latency
for legitimate traffic is far smaller than that of the existing
HCF scheme, which benefit latency-sensitive applications in
today’s data centers significantly.

7 RELATED WORK

Besides the most relevant anti-spoofing works discussed in
Section §2.1, our work is also inspired by the following
topics.
Programmable switch acceleration. Researchers have ex-
plored various approaches to leverage programmable hard-
ware switches to accelerate various applications in network-
ing [9], [64], [65], [66], distributed systems [10], [67] and
security [68], [69]. These applications achieve much better
performance with lower costs than counterparts imple-
mented on commodity servers. Different from these works,
NETHCF uses switching ASICs to achieve a different goal,
spoofed IP traffic filtering, and adopts distinct techniques
and optimization to achieve our goal.
Hash-based data structures. Hash-based data structures
are usually used to fast access the data with low memory
costs. Examples include bloom filter [70], counting bloom
filter [71], invertible bloom filter [72], count-min sketch [73],
cuckoo hashing [74], d-left hashing [75], and etc. These
data structures are becoming more and more popular under
the programmable hardware switch scenarios [76], [66], as
both the memory and time budget for packet processing
are limited. NETHCF uses some of these data structures to
save the memory, and also designs plenty of other unique
techniques and optimizations to achieve our goal.
IP route caching. There are earlier works on traditional IP
route caching [77], [78], [79], [80], which propose to store a
subset of forwarding rules in the forwarding table and store
the rest in inexpensive slow memory. Most of these works
share the observation that IP traffic exhibits both temporal
and spatial locality for route caching, which also partly
inspires our NETHCF design. However, different from these
existing works, NETHCF has a main focus on adversary
scenarios to mitigate fake hot phenomenon, which has not
been covered in these previous works.
FIB aggregation. To overcome the routing scalability prob-
lem, a long body of researches have been devoted to FIB
aggregation [81], [82], [83], [84], [85], [86]. In particular,
there are fast algorithms for optimal FIB aggregation, e.g.,
ORTC [81], EAR [85], and there are also online algorithms,
e.g., SMALTA [84], FIFA [86], to support fast incremental

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

13

updates with minor sacrifices on compression effectiveness.
Inspired by these works, we adopt the IP2HC mapping table
aggregation techniques in NETHCF to store more entries
in the cache. However, these solutions can not adapt to
legitimate hop-count changes and IP popularity changes in
low cost, which is a main contribution of our paper.

8 CONCLUSION

In this paper, we identify the new opportunity to im-
prove the current spoofed packet filtering practice using
programmable switching ASICs, and propose NETHCF, a
line-rate in-network spoofed packet filtering system. We
decouple the existing HCF into two parts, aggregate the
IP2HC mapping table as much as possible to cache more
entries in the data plane cache, and design several effective
mechanisms to make NETHCF adapt to end-to-end routing
changes, IP popularity changes, and network activity dy-
namics. We implement a prototype of NETHCF in the state-
of-the-art Barefoot Tofino switch and conduct extensive
experiments. Evaluations demonstrate that NETHCF can
achieve line-rate and adaptive spoofed IP packet filtering
with only minimal overheads.

REFERENCES

[1] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan,
“Nethcf: Enabling line-rate and adaptive spoofed ip traffic filter-
ing,” in ICNP. IEEE, 2019.

[2] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos
defense mechanisms,” ACM SIGCOMM Computer Communication
Review, vol. 34, no. 2, pp. 39–53, 2004.

[3] Cloudflare, “The real cause of large ddos - ip spoofing,” https://
blog.cloudflare.com/the-root-cause-of-large-ddos-ip-spoofing/,
2018, [Online; accessed Oct. 11, 2018].

[4] CAIDA, “State of ip spoofing,” https://spoofer.caida.org/
summary.php, 2018, [Online; accessed Oct. 16, 2018].

[5] C. Jin, H. Wang, and K. G. Shin, “Hop-count filtering: an effective
defense against spoofed ddos traffic,” in Proceedings of the 10th
ACM conference on Computer and communications security. ACM,
2003, pp. 30–41.

[6] H. Wang, C. Jin, and K. G. Shin, “Defense against spoofed ip traffic
using hop-count filtering,” IEEE/ACM Transactions on Networking
(ToN), vol. 15, no. 1, pp. 40–53, 2007.

[7] B. Networks, “Tofino: World’s fastest p4-programmable eth-
ernet switch asics,” https://barefootnetworks.com/products/
brief-tofino/, 2018, [Online; accessed Oct. 13, 2018].

[8] XPliant, “Xpliant ethernet switch product family,” https://www.
cavium.com/xpliant-ethernet-switch-product-family.html, 2018,
[Online; accessed Oct. 19, 2018].

[9] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching
asics,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. ACM, 2017, pp. 15–28.

[10] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim,
and I. Stoica, “Netcache: Balancing key-value stores with fast in-
network caching,” in Proceedings of the 26th Symposium on Operating
Systems Principles. ACM, 2017, pp. 121–136.

[11] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agar-
wal, S. Ratnasamy, and S. Shenker, “Network requirements for
resource disaggregation.” in OSDI, vol. 16, 2016, pp. 249–264.

[12] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang, “Congestion
control for large-scale rdma deployments,” in ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4. ACM, 2015, pp.
523–536.

[13] N. Github, “Nethcf,” https://github.com/NetHCF/NetHCF,
2019, [Online; accessed Aug. 19, 2019].

[14] J. Li, M. Sung, J. Xu, and L. Li, “Large-scale ip traceback in high-
speed internet: Practical techniques and theoretical foundation,”
in Security and privacy, 2004. Proceedings. 2004 IEEE symposium on.
IEEE, 2004, pp. 115–129.

[15] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical
network support for ip traceback,” in ACM SIGCOMM Computer
Communication Review, vol. 30, no. 4. ACM, 2000, pp. 295–306.

[16] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchak-
ountio, S. T. Kent, and W. T. Strayer, “Hash-based ip traceback,”
in ACM SIGCOMM Computer Communication Review, vol. 31, no. 4.
ACM, 2001, pp. 3–14.

[17] D. X. Song and A. Perrig, “Advanced and authenticated marking
schemes for ip traceback,” in INFOCOM 2001. Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2. IEEE, 2001, pp. 878–886.

[18] R. Stone et al., “Centertrack: An ip overlay network for tracking
dos floods.” in USENIX Security Symposium, vol. 21, 2000, p. 114.

[19] J. Ioannidis and S. M. Bellovin, “Implementing pushback: Router-
based defense against ddos attacks.” in NDSS, vol. 2, 2002.

[20] A. D. Keromytis, V. Misra, and D. Rubenstein, “Sos: Secure overlay
services,” in ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4. ACM, 2002, pp. 61–72.

[21] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang, “Save:
Source address validity enforcement protocol,” in INFOCOM 2002.
Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 3. IEEE, 2002,
pp. 1557–1566.

[22] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the net-
work,” ACM SIGCOMM Computer Communication Review, vol. 32,
no. 3, pp. 62–73, 2002.

[23] K. Park and H. Lee, “On the effectiveness of route-based packet
filtering for distributed dos attack prevention in power-law inter-
nets,” in ACM SIGCOMM computer communication review, vol. 31,
no. 4. ACM, 2001, pp. 15–26.

[24] D. K. Yau, J. Lui, F. Liang, and Y. Yam, “Defending against dis-
tributed denial-of-service attacks with max-min fair server-centric
router throttles,” IEEE/ACM Transactions on Networking (TON),
vol. 13, no. 1, pp. 29–42, 2005.

[25] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: secure
and adoptable source authentication,” in Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implemen-
tation. USENIX Association, 2008, pp. 365–378.

[26] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: A
new facility for resource management in server systems,” in OSDI,
vol. 99, 1999, pp. 45–58.

[27] X. Qie, R. Pang, and L. Peterson, “Defensive programming: Us-
ing an annotation toolkit to build dos-resistant software,” ACM
SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 45–60, 2002.

[28] O. Spatscheck and L. L. Peterson, “Defending against denial of
service attacks in scout,” in OSDI, vol. 99, 1999, pp. 59–72.

[29] D. J. Bernstein, “Syn cookies,” https://cr.yp.to/syncookies.html,
2018, [Online; accessed Oct. 23, 2018].

[30] A. Juels and J. G. Brainard, “Client puzzles: A cryptographic
countermeasure against connection depletion attacks.” in NDSS,
vol. 99, 1999, pp. 151–165.

[31] X. Wang and M. K. Reiter, “Defending against denial-of-service
attacks with puzzle auctions,” in Security and Privacy, 2003. Pro-
ceedings. 2003 Symposium on. IEEE, 2003, pp. 78–92.

[32] Subin, “Default ttl (time to live) values of different os,” https://
subinsb.com/default-device-ttl-values/, 2019, [Online; accessed
Aug. 19, 2019].

[33] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu et al., “Ananta: Cloud scale
load balancing,” in ACM SIGCOMM Computer Communication
Review, vol. 43, no. 4. ACM, 2013, pp. 207–218.

[34] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov,
E. Mann-Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and
J. D. Hosein, “Maglev: A fast and reliable software network load
balancer,” in 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), 2016, pp. 523–535.

[35] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in
14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17), 2017, pp. 97–112.

[36] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Ma-
ciocco, M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo et al.,
“Rollback-recovery for middleboxes,” in ACM SIGCOMM Com-
puter Communication Review, vol. 45, no. 4. ACM, 2015, pp. 227–
240.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

14

[37] M. Zhang, J. Bi, K. Gao, Y. Qiao, G. Li, X. Kong, Z. Li, and H. Hu,
“Tripod: Towards a scalable, efficient and resilient cloud gateway,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp.
570–585, 2019.

[38] CAIDA, “The caida anonymized internet traces 2016 dataset,”
https://www.caida.org/data/passive/passive\ 2016\ dataset.
xml, 2018, [Online; accessed Oct. 19, 2018].

[39] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of nfv,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 2016,
pp. 203–216.

[40] A. T. ARTICLES, “5 most famous ddos attacks,”
https://www.a10networks.com/resources/articles/
5-most-famous-ddos-attacks, 2018, [Online; accessed Jan. 19,
2019].

[41] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware
and software,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4, pp. 27–38, 2015.

[42] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4,
pp. 99–110, 2013.

[43] B. Networks, “Second-generation of world’s fastest p4-
programmable ethernet switch asics,” https://barefootnetworks.
com/products/brief-tofino-2/, 2019, [Online; accessed Mar. 13,
2019].

[44] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 3, pp. 87–95,
2014.

[45] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Bal-
akrishnan, G. Varghese, N. McKeown, and S. Licking, “Packet
transactions: High-level programming for line-rate switches,” in
Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 2016,
pp. 15–28.

[46] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scal-
ing hardware accelerated network monitoring to concurrent and
dynamic queries with* flow,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, 2018.

[47] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
information rich flow record generation on commodity switches,”
in Proceedings of the Thirteenth EuroSys Conference. ACM, 2018,
p. 11.

[48] J. Bai, J. Bi, M. Zhang, and G. Li, “Filtering spoofed ip traffic
using switching asics,” in Proceedings of the ACM SIGCOMM 2018
Conference on Posters and Demos. ACM, 2018, pp. 51–53.

[49] V. Paxson, “Empirically derived analytic models of wide-area tcp
connections,” IEEE/ACM transactions on Networking, vol. 2, no. 4,
pp. 316–336, 1994.

[50] M. E. Crovella and A. Bestavros, “Self-similarity in world wide
web traffic: evidence and possible causes,” IEEE/ACM Transactions
on networking, vol. 5, no. 6, pp. 835–846, 1997.

[51] R. Jaiswal, S. Lokhandes, A. Bakre, and K. Gutte, “Performance
analysis of ipv4 and ipv6 internet traffic,” ICTACT J Commun Tec,
vol. 6, no. 4, pp. 1208–17, 2015.

[52] K. Qian, S. Ma, M. Miao, J. Lu, T. Zhang, P. Wang, C. Sun, and
F. Ren, “Flexgate: High-performance heterogeneous gateway in
data centers,” in Proceedings of the 3rd Asia-Pacific Workshop on
Networking 2019. ACM, 2019, pp. 36–42.

[53] V. Paxson, “End-to-end routing behavior in the internet,”
IEEE/ACM Transactions on Networking (ToN), vol. 5, no. 5, pp. 601–
615, 1997.

[54] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “Bgp routing stability
of popular destinations,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment. ACM, 2002, pp. 197–202.

[55] Wikipedia, “Syn flood,” https://en.wikipedia.org/wiki/SYN
flood, 2020, [Online; accessed Apr. 3, 2021].

[56] G. IPv6, “Google ipv6 adoption statistics,” https://www.google.
com/intl/en/ipv6/statistics.html, 2019, [Online; accessed Mar. 13,
2019].

[57] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al.,
“Onix: A distributed control platform for large-scale production
networks.” in OSDI, vol. 10, 2010, pp. 1–6.

[58] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external
memory for switch data planes,” in Proceedings of the 17th ACM
Workshop on Hot Topics in Networks. ACM, 2018, pp. 1–7.

[59] A. Mahimkar, J. Dange, V. Shmatikov, H. M. Vin, and Y. Zhang,
“dfence: Transparent network-based denial of service mitigation.”
in NSDI, vol. 7, 2007, pp. 327–340.

[60] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing
with sdn data plane,” in IEEE INFOCOM 2017-IEEE Conference on
Computer Communications. IEEE, 2017, pp. 1–9.

[61] B. Networks, “P4 studio: The next generation software de-
velopment environment,” https://www.barefootnetworks.com/
products/brief-p4-studio/, 2019, [Online; accessed Oct. 13, 2018].

[62] P. Hintjens, ZeroMQ: messaging for many applications. ”O’Reilly
Media, Inc.”, 2013.

[63] T. L. F. Project, “Developer quick start guide,” https://www.dpdk.
org/, 2019, [Online; accessed Oct. 13, 2018].

[64] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissic-
chio, and L. Vanbever, “Blink: Fast connectivity recovery entirely
in the data plane,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019, pp. 161–176.

[65] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Al-
izadeh, V. Jeyakumar, and C. Kim, “Language-directed hardware
design for network performance monitoring,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication.
ACM, 2017, pp. 85–98.

[66] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: query-driven streaming network teleme-
try,” in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication. ACM, 2018, pp. 357–371.

[67] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Sto-
ica, “Netchain: Scale-free sub-rtt coordination,” in 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX Association, 2018.

[68] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechev,
“Nethide: Secure and practical network topology obfuscation,” in
27th {USENIX} Security Symposium ({USENIX} Security 18), 2018,
pp. 693–709.

[69] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks
with programmable switches,” in Proceedings of NDSS, 2020.

[70] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[71] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Vargh-
ese, “An improved construction for counting bloom filters,” in
European Symposium on Algorithms. Springer, 2006, pp. 684–695.

[72] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the difference? efficient set reconciliation without prior context,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4,
pp. 218–229, 2011.

[73] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[74] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[75] B. Vöcking, “How asymmetry helps load balancing,” Journal of the
ACM (JACM), vol. 50, no. 4, pp. 568–589, 2003.

[76] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for
data centers,” in 13th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 16), 2016, pp. 311–324.

[77] D. C. Feldmeier, “Improving gateway performance with a routing-
table cache,” in IEEE INFOCOM’88, Seventh Annual Joint Conference
of the IEEE Computer and Communcations Societies. Networks: Evolu-
tion or Revolution? IEEE, 1988, pp. 298–307.

[78] C. Kim, M. Caesar, A. Gerber, and J. Rexford, “Revisiting route
caching: The world should be flat,” in International Conference on
Passive and Active Network Measurement. Springer, 2009, pp. 3–12.

[79] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang,
“Leveraging zipf’s law for traffic offloading,” ACM SIGCOMM
Computer Communication Review, vol. 42, no. 1, pp. 16–22, 2012.

[80] M. Bienkowski, J. Marcinkowski, M. Pacut, S. Schmid, and
A. Spyra, “Online tree caching,” in Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architectures. ACM,
2017, pp. 329–338.

[81] R. Draves, C. King, S. Venkatachary, and B. D. Zill, “Constructing
optimal ip routing tables,” in Infocom, vol. 99, 1999, pp. 88–97.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3161015, IEEE
Transactions on Dependable and Secure Computing

15

[82] B. Cain, “Auto aggregation method for ip prefix/length pairs,”
Jun. 4 2002, uS Patent 6,401,130.

[83] X. Zhao, Y. Liu, L. Wang, and B. Zhang, “On the aggregatability
of router forwarding tables,” in 2010 Proceedings IEEE INFOCOM.
IEEE, 2010, pp. 1–9.

[84] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh,
J. Wang, and P. Francis, “Smalta: practical and near-optimal fib
aggregation,” in Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies. ACM, 2011, p. 29.

[85] T. Yang, B. Yuan, S. Zhang, T. Zhang, R. Duan, Y. Wang, and
B. Liu, “Approaching optimal compression with fast update for
large scale routing tables,” in Proceedings of the 2012 IEEE 20th
International Workshop on Quality of Service. IEEE Press, 2012, p. 32.

[86] Y. Liu, B. Zhang, and L. Wang, “Fifa: Fast incremental fib aggrega-
tion,” in 2013 Proceedings IEEE INFOCOM. IEEE, 2013, pp. 1–9.

Menghao Zhang received his B.S. degree and
Ph.D. degress in computer science from Ts-
inghua University, China in 2016 and 2021, re-
spectively. He is now a Joint Post Doc at Ts-
inghua University and Kuaishou Technology. His
research interests include programmable net-
work, high-performance network and network
security.

Guanyu Li received his B.S. degree in school of
compute science & technology from Huazhong
University of Science & Technology, China. He
is now a Ph.D. student at Institute for Network
Science and Cyberspace, Tsinghua University.
His research focuses on software-defined net-
working, network function virtualization and cy-
ber security.

Xiao Kong received his B.S. degree of Com-
puter Science & Technology from Nankai Uni-
versity. He is now a M.S. student at Institute
for Network Science and Cyberspace, Tsinghua
University. His research focuses on software-
defined networking, network function virtualiza-
tion and cyber security.

Chang Liu received his B.S. degree in School
of Computer Science & Technology from Beijing
Institute of Technology, China. He is now a Ph.D.
student at Institute for Network Science and
Cyberspace, Tsinghua University. His research
interests are software-defined networking, pro-
grammable data plane and cyber security.

Mingwei Xu received the B.S. and Ph.D. de-
grees from Tsinghua University. He is currently a
full professor with the Department of Computer
Science and Technology, Tsinghua University.
His research interest includes computer network
architecture, high-speed router architecture, and
network security.

Guofei Gu received his Ph.D. degree in Com-
puter Science from the College of Computing,
Georgia Tech in 2008. Now he is a professor
in the Department of Computer Science & En-
gineering at Texas A&M University. His research
interests are in network and systems security,
such as malware and APT defense, software-
defined networking (SDN/NFV) security, mobile
and IoT security, and intrusion/anomaly detec-
tion.

Jianping Wu received the B.S., M.S., and
Ph.D. degrees from Tsinghua University, Beijing,
China. He is currently a full professor and the
Director of the Network Research Center and a
Ph.D. Supervisor with the Department of Com-
puter Science and Technology, Tsinghua Univer-
sity. Since 1994, he has been in charge of China
Education and Research Network. His research
interests include the next-generation Internet,
IPv6 deployment and technologies, and Internet
protocol design and engineering.

Authorized licensed use limited to: Texas A M University. Downloaded on July 07,2022 at 21:31:31 UTC from IEEE Xplore. Restrictions apply.

