
Abusing Hidden Properties to Attack the Node.js Ecosystem

Feng Xiao Jianwei Huang† Yichang Xiong∗ Guangliang Yang
Hong Hu‡ Guofei Gu† Wenke Lee

GeorgiaTech †Texas A&M ‡PennState ∗Independent

Abstract
Nowadays, Node.js has been widely used in the development
of server-side and desktop programs (e.g., Skype), with its
cross-platform and high-performance execution environment
of JavaScript. In past years, it has been reported other dynamic
programming languages (e.g., PHP and Ruby) are unsafe on
sharing objects. However, this security risk is not well studied
and understood in JavaScript and Node.js programs.

In this paper, we fill the gap by conducting the first system-
atic study on the communication process between client- and
server-side code in Node.js programs. We extensively identify
several new vulnerabilities in popular Node.js programs. To
demonstrate their security implications, we design and de-
velop a novel feasible attack, named hidden property abusing
(HPA). Our further analysis shows HPA attacks are subtly
different from existing findings regarding exploitation and
attack effects. Through HPA attacks, a remote web attacker
may obtain dangerous abilities, such as stealing confidential
data, bypassing security checks, and launching DoS (Denial
of Service) attacks.

To help Node.js developers vet their programs against HPA,
we design a novel vulnerability detection and verification
tool, named LYNX, that utilizes hybrid program analysis to
automatically reveal HPA vulnerabilities and even synthesize
exploits. We apply LYNX on a set of widely-used Node.js
programs and identify 15 previously unknown vulnerabilities.
We have reported all of our findings to the Node.js community.
10 of them have been assigned with CVE, and 8 of them are
rated as “Critical” or “High” severity. This indicates HPA
attacks can cause serious security threats.

1 Introduction

Node.js is a cross-platform and high-performance execution
environment for JavaScript programs. It has been widely used
to develop server-side and desktop applications such as Skype,
Slack, and WhatsApp [7,16]. According to a recent study [17],
Node.js is the most widely-used technology among all kinds
of developments for three years (2017-2019).

The prominence of Node.js makes its security critical.
Specifically, once a widely-used module is found to be vul-
nerable, a huge number of Node.js applications may be im-
pacted due to the heavy reuse phenomenon [49]. By exploiting
these vulnerabilities, remote attackers may abuse powerful
and privileged APIs inside vulnerable server-side applications
to launch severe attacks, like stealing confidential data or
executing arbitrary malicious code [23, 29, 37, 38, 43, 44, 49].

Node.js programs are built in the dynamic programming
language – JavaScript. In the past few years, several dynamic
languages, like PHP [28] and Ruby [14], suffer from a com-
mon security risk CWE-915 [9], where an internal object
attribute is improperly modified by untrusted user input. De-
spite the severe security consequence, this issue is not well
studied and understood in JavaScript and Node.js programs.

In this paper, we conduct the first systematic study on the
object sharing and communication process between client-
and server-side code in Node.js programs. We confirm that the
above security risk also exists in JavaScript and Node.js pro-
grams. To demonstrate the security implications, we design
a novel attack, named hidden property abusing (HPA), that
enables remote web attackers to obtain dangerous abilities,
such as stealing confidential data, bypassing security checks,
and launching denial-of-service attacks. Our further analysis
shows HPA differs from existing findings on PHP [28] and
Ruby [14] in many aspects such as exploitation and attack
effects (see more details in §3.4).

An HPA attack example is shown in Figure 1. As the figure
shows, a remote web attacker sends well-crafted JSON data
with an extra and unexpected property “I2” (called hidden
property) to the target Node.js server program. Then, the vic-
tim program deals with the malicious input payload as normal.
Finally, I2 propagates to an internal object. As indicated by
the red line, I2 of input overwrites and replaces a key property
of the victim internal object with the conflicting name. Thus,
the attacker may abuse the propagation process (i.e., property
propagation) of a hidden property to powerfully manipulate
critical program logic associated with the compromised prop-
erty, such as directly calling privileged APIs by assigning I2

Sharing Objects

P1 I2

Node.js program

internal input

Remote attacker

I1 I2

Object.assign(internal, input)

 if (Internal.I2 == ‘admin’)
{
 privileged_api();

}

Figure 1: An example of HPA.

of input with the proper value (i.e., "admin").
Our analysis shows that the victim property can be of any

type, such as critical functions or key program states. Due to
this feature, input validation cannot stop attackers launching
HPA attacks, as they may disable the validation logic by over-
writing critical states or removing all security checks [24, 32].
We find this attack scenario is very common in practice.

To help Node.js developers detect and verify the emerging
HPA issues in their Node.js applications and modules, we de-
sign and implement a vulnerability detection and verification
tool, named LYNX1. LYNX combines the advantages of static
and dynamic analysis to track property propagation, identify
hidden properties, and generate corresponding concrete ex-
ploits for the verification purpose. We are releasing the source
code of LYNX at https://github.com/xiaofen9/Lynx .

We evaluate LYNX by applying it on 102 real Node.js ap-
plications and modules widely used in practice. As a conse-
quence, LYNX uncovered 15 previously unknown vulnerabili-
ties. We have made responsible disclosure of the discovered
vulnerabilities. By the time of paper writing, we have got 10
CVEs assigned; 8 of them are rated as critical or high severity
by NVD (National Vulnerability Database); 7 vulnerabilities
have been patched by their vendors. This indicates HPA at-
tacks can cause serious security threats. We are collaborating
with Node.js community to mitigate HPA. We first help an
authoritative public vulnerability database create a new notion
to describe the new type of vulnerabilities. In addition, we
propose three potential HPA mitigation, with more details in
§A.1.

In summary, we make the following contributions:
• We present the hidden property abusing attack against

Node.js applications, and demonstrate its severe security
consequences.

• We design and implement LYNX, a tool that automati-
cally detects HPA issues and synthesizes exploits.

• Our evaluation reveals real-world HPA issues that can
lead to serious security impacts.

2 Background

Node.js and its runtime engine. Node.js is used for ex-
ecuting JavaScript code outside of browsers. Many event-
driving servers/middlewares and traditional web applications
are deployed in Node.js. To interpret and execute JavaScript,

1The lynx is a type of wildcat. In Greek myths, it is believed that lynxes
can see what others can’t, and its role is revealing hidden truths.

Node.js implements a runtime engine based on Chrome’s V8
JavaScript engine [19]. To satisfy the needs of server-side
application scenarios, the engine provides a set of APIs to
let JavaScript interact with host environment. With provided
APIs, the JavaScript code can perform sensitive operations
such as file operations.

However, Node.js does not enforce isolation to separate
the application from host environment. Thus, serious security
issues might be introduced if certain internal states of the
Node.js application are compromised.

Object sharing. Most Node.js programs are deployed as
web-based applications according to the official Node.js sur-
vey [1]. Similar to traditional web applications in other lan-
guages (e.g., PHP), network protocols like HTTP(S) and Web-
Sockets are widely-used to exchange data between users and
the application.

In the Node.js ecosystem, it is a common feature for ap-
plications to convert received data into an object (i.e., data
serialization). With the help of this feature, Node.js appli-
cations can send/receive a very complex data structure. Ac-
cording to our investigation on npm, different programs are
using distinct methods/code implementations to share objects.
Currently, most programs share objects via JSON serializa-
tion or query-string serialization (more discussion in §4.4.1),
while other channels may also be used such as HTTP headers
(user-agent [18] and cookies [4]).

3 Hidden Property Abusing

In this section, we present the details of HPA attacks. First,
we define our threat model. Next, we walk through a real-
world example to demonstrate HPA. Then, we define the
vulnerable behaviors and the associated attack vectors. In the
end, we discussed the differences between HPA and other
related attacks.

3.1 Threat Model

We assume that Node.js applications and modules are benign
but vulnerable. In addition, we assume the target application
correctly implements object sharing (i.e., data deserialization).
In this setting, a remote web attacker aims to compromise
the vulnerable server-side program using HPA. To exploit the
vulnerability, the attacker sends a well-crafted payload to the
victim application through the legitimate interfaces. When
the malicious payload reaches the victim application, it is
treated as normal data and dealt with as regular. Due to the
lack of strict isolation between input and internal objects, the
malicious payload is propagated to the internal objects of the
vulnerable Node.js module. Finally, a critical internal object
is corrupted and the attack is launched.

https://github.com/xiaofen9/Lynx

email SQLI

passwd …

constructor false

“validated” param
query(email)

email SQLI

passwd …

constructor false

param

login(req)

metaData …

constructor false

__proto__

format false

format

candidate

param

metaData …

__proto__ …

LoginSch.prototype

email SQLI

passwd …

constructor false

schema

constructor {isEmail...}

Authentication
Param Handler

Database

Validator

①

②

③

④

transform(schema,param)
{
Object.assign(schema,param)
}

validate(candidate)
{
format = getSchema(candidate)

…
}

Figure 2: The attacker leverages HPA to bypass input vali-
dation and attack sensitive services behind (For illustration
purpose, we use a database service as the attack target).

3.2 Running Example

To illustrate the HPA attack, we walk through a real-world
exploit found in the high-profile Node.js framework “routing-
controller” [13] (63,000+ monthly downloads on npm). In this
example, we demonstrate although this vulnerable framework
enforces a global input validation for unsafe external data, an
attacker can still leverage HPA attacks to tamper its validation
logic and introduce arbitrary malicious payloads.

Figure 2 shows the attack details. In the first step, the
attacker adds an additional property (i.e., hidden property)
constructor:false to the input object when accessing the
authentication web API login() of the victim framework.
Upon being called, the authentication module will instantiate
an object named param and sends it to the parameter handler,
which is responsible for validating user input. To this end,
function transform() in the figure builds a validation candi-
date by merging param with the format specification object
schema. As indicated in the second step, when building such
a candidate, the hidden property constructor:false further
propagates into the internal object schema.

The above propagation process enables the attacker to dis-
able the input validation logic by hijacking the inheritance
chain of constructor. In JavaScript, every object has a link to
a prototype object. When the program wants to access a prop-
erty of an object, the property will not only be searched on the
object but on the prototype of the object, and even the proto-
type of the prototype, until a property with a matching name
is found. As a result, every object has many inherited proper-
ties besides its own properties. However, such an inheritance
chain can be hijacked if there is a conflicting name property
locating at a higher level of the searching tree (Note that the
hijacking process differs from prototype pollution [12]. More
details will be discussed at §3.3). In the third step, function
validate() checks all the properties within the candidate to
see if the input object is legitimate or not. validate internally
invokes function getSchema() to extract the format specifica-
tion from candidate. However, because of the hijack, func-
tion getSchema() accesses the forged constructor (pointed

by the red dashed line) rather than the real one (pointed by the
black dashed line). As a result, the final format object used
for validation is controlled by the attacker through the hidden
property. To bypass the input validation, the attacker only
needs to set format to an invalid value such as false. Finally,
as indicated in the fourth step, the attacker can let a malicious
email pass the validation and further performs SQL Injection
attacks against the database module.

3.3 Attack Vectors

As demonstrated in §3.2, a remote attacker can propagate a
hidden property to tamper certain internal states. In general,
there are two typical attack vectors. The first one is called
app-specific attribute manipulation, which involves tampering
certain internal properties defined by the application develop-
ers. The second one is prototype inheritance hijacking, which
hijacks the prototype inheritance chain. It is worth noting that
our second attack vector is different from existing attacks,
like prototype pollution [12]. Prototype pollution requires
the modification of the prototype. However, as shown in the
running example, the attacker of HPA does not need to tamper
the prototype.
App-specific attribute manipulation. This attack vector tar-
gets the vulnerable code that falsely exposes certain app-
specific attributes (e.g., access right) to a user-controlled ob-
ject. As shown in Figure 1, the I2 property is supposed to be
initialized and managed by internal functions. However, with
HPA, attackers might propagate a same-name property to the
internal object, and thus access sensitive APIs. This attack
vector can be used to abuse certain service such as order status
in large applications.
Prototype inheritance hijacking. This vector hijacks the
prototype inheritance chain so that the attacker can trick the
vulnerable program into referencing a user-controlled prop-
erty rather than the one inherited from the prototype. With
this vector, attackers may forge many built-in properties, and
even nested prototype properties (Two of our discovered vul-
nerabilities are exploited using nested properties). In our run-
ning example in §3.2, attackers forge constructor. If neces-
sary, they can also forge other prototype properties such as
constructor.name. This vector is very useful because many
JavaScript developers tend to trust properties inherited from
prototype and make many security-sensitive decisions based
on them.

3.4 Comparing HPA with related attacks

The risks of improper modification of dynamic object at-
tributes (CWE-915) have been identified in some dynamic
languages such as Ruby and PHP. We are the first to identify
such risks in Node.js. Moreover, we find HPA differs from
existing vulnerabilities in multiple aspects.

Table 1: Comparing HPA and Ruby mass assignment.
Aspect Hidden Property Abusing Ruby Mass Assignment

Abused logics Object sharing Assignment
Payload Type Literal value/nested object Literal value
Capabilities Overwrite Overwrite/Create

Table 1 summarizes the difference between HPA and Ruby
mass assignment, a typical vulnerability resulting from CWE-
915. First of all, they abuse different logics to pass payloads:
HPA leverages the object sharing to pass malicious objects
into the victim programs, while Ruby mass assignment abuses
a framework-specific assignment feature to modify certain
existing properties on the left side of an assignment. Second,
HPA can introduce hidden properties with either literal value
or nested objects while mass assignment payload is merely
literal value. Third, since Ruby is a strong-typed language,
mass assignment vulnerability cannot create new properties
to the victim object. However, JavaScript is more flexible and
thus HPA can inject arbitrary properties to the victim object
and even allows hidden properties to propagate over several
variables before they reach the target object. Our running
example is such a case: the hidden property constructor
propagates from the input object to the internal schema object
to attack the input validation logic.

It is worth noting that vulnerabilities of CWE-915 are not
deserialization bugs (CWE-502 [5]). Specifically, CWE-915
is more narrowly scoped to object modification and does not
necessarily exploit the deserialization procedure. For instance,
HPA does not attack the logics of object deserialization. In-
stead, it aims at modifying the properties of internal objects.

4 LYNX Design and Implementation

4.1 Definitions
In this section, we first define several important terms used in
the paper and then describe the problem we aim to address.

Hidden Property: Given a module, it contains an input object
Oinput and an internal object Ointernal . A hidden property
Phidden exists in Oinput only if all of the following three
requirements are satisfied:

• Phidden belongs to Ointernal and it is referenced in the
module.

• Phidden of Ointernal can be modified if a conflicting
property with the same name (i.e., Phidden) is added into
Oinput .

• Phidden is not a default parameter of Oinput . This means
Phidden of Oinput is not initialized when the module is
invoked with default parameters2.

To help describe the problem, we use “property carrier”
to denote all the variables that carry hidden properties (includ-
ing Ointernal and Oinput).

2Here “default parameters” means documented usage of the module

Harmful hidden property: A hidden property is considered
harmful if an attacker can abuse this property to introduce un-
expected behaviors to the module. In this paper, we consider
the potential attack effects from the following three aspects:

• Confidentiality: The hidden property might lead to sen-
sitive information leakage while being abused.

• Integrity: The attacker could violate the consistency or
trustworthiness of a critical property in the module.

• Availability: The attacker could violate the application’s
expectations for the property, leading to a denial-of-
service attack due to an unexpected error condition.

4.2 Challenges and Solutions

We aim to design and develop an end-to-end system that can
automatically and effectively detect the HPA security issues
on the target Node.js programs. However, this is not a trivial
task due to the following two challenges.

C1. How to discover hidden properties for Node.js pro-
grams?

Existing techniques cannot perfectly solve this problem. In
particular, static analysis can easily get the whole picture of
the target program, but usually introduces high false positives,
especially when dealing with points-to and callback issues.
We find such cases are very commonly faced in Node.js pro-
grams. Dynamic analysis, like data flow tracking, is suitable
for 1) tracking input objects and their all propagation, and
further 2) discovering and flagging related property carriers,
and treating their corresponding properties as potential hidden
properties. However, in practice, we find the dynamic track-
ing often misses many critical execution paths and hidden
properties, and thus causes false negatives.
Our Solution. We design a hybrid approach that leverages
the advantages of both of dynamic and static analysis to dis-
cover hidden properties. First, we utilize a lightweight label
system to dynamically track input objects and related prop-
erties carriers, and dump all properties of properties carriers
as a part of hidden property candidates. To discover as many
execution paths as possible, especially critical paths, we recur-
sively and extensively label input objects and test the target
program. Second, the above dynamic test inevitably causes
false negatives. We find in many cases, critical hidden proper-
ties are still ignored even when the corresponding property
carriers have been successfully flagged (see more detail in
§4.4). To mitigate the problem, we introduce static analysis by
greedily searching potentially ignored properties. Finally, we
collect results and obtain a list of hidden property candidates.

C2. Among a large number of hidden properties, how to
determine which one is valuable and exploitable for at-
tackers?

Discovering Property
Carriers

Pinpointing Hidden
Property Candidates

Generating Exploit
Templates

Node.js
program

Identifying Hidden Properties Generating HPA Exploits

Exploring Attack
Consequences Exploits

Candidate Pruning

Hidden Property
Candidates

Figure 3: LYNX Overview.

We find among the collected hidden property candidates, not
all of them are valuable and exploitable for attackers. Many
of them do not even cause any attack consequence, and thus
should be filtered out. Furthermore, the corresponding value
of an identified hidden property often has specific require-
ments and constraints. Therefore, given a hidden property
candidate, attackers need to determine its harmfulness and
compute its corresponding value.
Our Solution. We leverage symbolic execution to explore
all related paths, collect path constraints, detect sensitive be-
haviors, and finally generate exploits.

4.3 Design Overview
The overview of LYNX architecture is shown in Figure 3. As
discussed in §4.2, our approach is two-fold. In the first phase,
LYNX first dynamically runs a label system for recursively
tracking input objects, and identifying as many property car-
riers as possible. We implement the dynamic label system by
instrumenting the target Node.js code, and then executing the
instrumented code by triggering its APIs with regular input
data (e.g., test cases). Then, LYNX obtains hidden property
candidates by collecting the above dynamic analysis results
and applying static analysis to search ignored hidden proper-
ties. In particular, LYNX unitizes the necessary information
recorded in the previous dynamic analysis step, analyzes AST
(abstract syntax tree) of the target Node.js program, and de-
tects the operations related to property access. Lastly, we
prune the results based on our observations.

In the second phase, LYNX first generates exploit templates
with detected hidden property candidates. Then, LYNX runs
symbolic execution to reason the values of hidden properties
and verify the corresponding harmfulness and attack conse-
quences.

4.4 Identifying Hidden Properties
4.4.1 Discovering Property Carriers

We implement our dynamic analysis by instrumenting the
target Node.js program. In this section, we first present the
instrumentation details of labelling and tracking input, and
detecting property carriers. Then, we discuss how to drive
and execute the instrumented code.

Labelling and Tracking Input. We add labels to all
input objects for tracking them. The newly added la-

bel is a new property, which has a unique key-value
pair. For example, assuming the input object Oinput =

{"email":"a@gmail.com"}, LYNX instruments Oinput with
a new property. Hence, the new input object O′input is
{"email":"a@gmail.com", unique_key: unique_value}.

This above simple label-adding process works when Oinput

has a simple data structure. However, this method is not
enough when Oinput is complex. For example, when Oinput

has multiple properties such as Oinput .a and Oinput .b, these
child properties may propagate differently with distinct pro-
gram states. If we only add one label for Oinput , we will lose
track of all these child properties. Hence, LYNX traverses
Oinput and recursively injects labels into different child prop-
erties. For instance, consider the above Oinput with two prop-
erties, LYNX injects three different labels into the base of
Oinput , Oinput .a, and Oinput .b respectively.

The labeling method outperforms classic data flow tracking
(i.e., transparent tracking without changing input) in detecting
property carriers since it better emulates the attack process
of HPA. For example, there are cases that the tested program
contains a dispatcher which distributes the input by its type.
When analyzing such cases, LYNX will modifies the input in
the same way as the real attack process. If the modification
changes the input type, the input may trigger another path.
However, the classic method may still track the path for vanilla
input. Hence, our method can more accurately pinpoint the
real execution paths that a real HPA payload may trigger.

However, changing the original input may also bring nega-
tive effects. For instance, assume there is a checking function
that sanitizes a certain property of the input, if LYNX adds a la-
bel to the property, the program may raise an error and exit. To
mitigate this problem, LYNX applies a one-label-at-one-time
strategy. In each round of analysis, LYNX only adds one label
to one of the properties, and then, repeats this step multiple
times for testing all properties and their child properties.

Identifying Property Carriers. After adding labels to the
input, LYNX executes the program with the new input and
observes how the label property propagates. If LYNX finds
the label propagates to an internal object, it will mark the host-
ing object as a property carrier. For this purpose, we instru-
ment the target Node.js program by intercepting all variable
read/write operations. When such an operation occurs on an
internal object, LYNX recursively examines all properties and
child properties of this object. If a label is detected, this object
will be marked as a property carrier in the following form:
〈O,L,S〉, where O records the object name of property carrier,
L points to the JavaScript file that contains the detected object,
and S records the visibility scope of the carrier. In LYNX, “.”
is used to represent the scope by concatenating different func-
tion names. To differentiate function objects from variable
objects, we add special suffixes _fun to function-type scopes.
More details about the scope representation can be found in
§A.2,

Driving Dynamic Analysis. LYNX runs the instrumented
target Node.js program based on their types. More specifi-
cally, if the application is a web-based program (e.g., web
apps), LYNX directly runs it. If the target Node.js code is in a
Node.js module, LYNX needs to embed it in a simple Node.js
test application. Then, LYNX calls the exposed APIs of the
target Node.js module. However, in this case, LYNX needs to
feed the APIs with some proper input, which is often hard to
generate automatically. We mitigate this problem based on
the following observation: we find most of Node.js modules
are released with use cases (45 out of 50 most depended-upon
packages on npm [11] have directly usable test cases). Hence,
LYNX can directly use them to drive the analysis.

For triggering APIs, LYNX currently supports two types
of object sharing schemes. The first is JSON serialization,
which is also the most commonly used method. The second
method is query-string serialization. In the Node.js ecosystem,
many request parsing modules also support transferring the
URL query string to objects. For example, a request parsing
module called qs (100M monthly downloads on npm) con-
verts the query string into a single object (e.g., from ?a=1&b=2
to {a:1,b:2}). LYNX detects hidden properties in the query
string by recording and replaying web requests.

Running Example. To illustrate how LYNX identifies prop-
erty carriers, we revisit our running example. As indicated in
Figure 4, the injected label property propagates in a path fol-
lows the black dotted line. By tracking this flow, LYNX iden-
tifies three property carriers (value, param, and object) and
records carrier entities for each of them. To give an example
of the entity, we show how the entity of object is synthesized:
First, to get O, LYNX checks where the label property is identi-
fied. In this case, the label property is identified from the base
of object. As a result, LYNX directly sets O to “object”. Sec-
ond, to get L, LYNX obtains the file path of the current script.
Third, to get S, LYNX extracts the visibility scope of the carrier.
In this case, the carrier is found from an anonymous function
locating from line 10 to line 22. Hence, LYNX encodes the
visibility as anon.10_1.26_1_fun. Overall, the recorded entity
will be 〈object,script_path,anon.10_1.22_1._fun〉.

4.4.2 Pinpointing Hidden Property Candidates

Our dynamic analysis can effectively detect property carriers.
However, it inevitably has false negatives on detecting hidden
properties. We find in some cases important hidden properties
are ignored even though the hidden property carriers have
been uncovered. We mitigate the problem by applying static
analysis as a complement. In this section, we first discuss
the reason why dynamic analysis has false negatives. Then,
we present the design details of our static analysis. Last, we
discuss how to prune the analysis results.

Necessity of Static Analysis. To explain the weakness of
dynamic analysis, we use a dummy vulnerable code example

Listing 1 (abstracted from real code). In this example, the
function foo() builds an internal variable conf based on a
user-controlled variable input (line 2), which makes conf
become a property carrier. The dynamic approach can capture
propertyA, but it will miss propertyB if condition is not met.
To address the issue, LYNX implements an intraprocedural
static syntactic analysis that recognizes the indexing syntax,
no matter if the actual code is executed or not.

Listing 1 A example code vulnerable to HPA.
1 function foo (input){
2 var conf = new Config(input);
3 setA(conf.propertyA);
4 // other code
5 if (condition){
6 conf.propertyB = getB();
7 }
8 return conf;
9 }

Extracting Hidden Property Candidates. Given a hidden
property carrier “< O,L,S >”, LYNX first identifies it in the
corresponding AST (pointed by L). LYNX searches all the
object references within the visibility scope recorded in S.
Finally, LYNX pinpoints all the references that are child prop-
erties of O and marks them as hidden property candidates.
Child properties are potential hidden properties due to the
following reason: A property carrier 〈O,L,S〉 is reported be-
cause the label property can propagate to variable O. As a
result, it is possible that other properties under O can also be
forged/overwritten from the input. Note that not all the can-
didates found here can always be manipulated using inputs
due to the greedy strategy. Hence, LYNX will use the next
component to verify each candidate to ensure accuracy.

Due to the dynamic feature of JavaScript, child properties
may be indexed in different ways. To improve the detection
coverage of this module,LYNX concludes and recognizes the
following three indexing methods: (1) Static indexing: proper-
ties indexed with a literal-type key (e.g., obj.k or obj[’k’]);
(2) Function indexing: properties indexed with a built-in
function (e.g., obj.hasOwnProperty(’k’)). (3) Dynamic in-
dexing: properties indexed with a variable (e.g., obj[kvar]).
LYNX recognizes the first two methods statically: it traverses
the AST to recover the indexing semantics. To recognize prop-
erties in the third method, LYNX extracts the actual value of
the kvar from previous execution traces. It is worth noting
that, since LYNX relies on previous dynamic execution traces
to support dynamic indexing, it cannot guarantee 100% cover-
age. That is to say, LYNX only recognizes dynamic indexing
properties that are concretely indexed in the last step.

Running Example. Here we still use the example in Figure 4
to illustrate how it works. Taking the carrier object at line
11 as an example, LYNX first searches all its child property
references within its visibility scope (the anonymous function

from line 10 to line 22) and it detects that there exists a prop-
erty reference (constructor) exactly at where the carrier is
identified. After finding this property, LYNX needs to further
check whether the input object can overwrite this property or
not. To this end, LYNX checks if constructor is a child prop-
erty of O or not. After this check is passed, LYNX identifies
constructor as a hidden property candidate.

4.4.3 Pruning the Results

As described above, hidden property candidates are discov-
ered. However, we find some of them are known param-
eters rather than unknown hidden properties. This is be-
cause some Node.js modules implement optional parame-
ters as properties of input objects. These documented prop-
erties may also be extracted in the previous step. For ex-
ample, an email module by default accepts input object like
{"from": .., "to": ..} but also accepts more options such
as {"from": .., "to": .., "cc": ..}. It is apparent that
these documented parameters are not the hidden properties.

To correct the result, we introduce a context-based analyzer
to automatically “infer” whether the identified property can-
didate is a documented parameter or not. Our analysis is done
based on the following observation: documented parameters
are usually processed together by a dispatcher (e.g., a series
of if-else statements).

Based on this observation, we divided the argument pro-
cessing procedure into two classes: (1) The unused parameters
and the used parameters (i.e., properties in original input) are
processed by the same dispatcher. To deal with this case, the
analyzer records the used properties from arguments of the
exposed API. Then, it pinpoints hidden property candidates
that reside in the same dispatcher as used parameters. (2) The
unused parameters and the used parameters are processed by
different dispatchers. To detect such parameters, the analyzer
examines all the candidates to see if there are several candi-
dates found from the same dispatcher. If LYNX detects that
certain candidates match any of the situations, it will remove
them from the result.

4.5 Generating HPA Exploits

In the previous component, LYNX discovers the key name of
a hidden property. By injecting a property with such a key,
the attacker may have changes overwriting/forging certain in-
ternal objects. In this section, we leverage symbolic execution
to reason if the discovered properties are exploitable or not.
Given a hidden property candidate, we first inject it into the
input to construct the test payload. Because its corresponding
value is undetermined yet, we leave the value be symbolized.
Then, to decide whether a hidden property is harmful or not,
we explore as many paths as possible and pinpoint sensitive
sinks along the uncovered paths.

function transform(schema, param){
 value = Object.assign(
 schema,

param);
 return value;

}

function validate(object) {
 ...
 var targetMetadatas = getSchema(
 object.constructor);

 const groupedMetadatas = this.metadataStorage
 .groupByPropertyName(targetMetadatas);
 ...
 // validation based on metadatas
 Object.keys(groupedMetadatas)
 .forEach(function(propertyName) {

if(illegal) return null;
});

 return object;
}

property carrierData flow of

Data flow of

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 two possible paths

symbolized variable

Figure 4: Illustrating the workflow of LYNX with a code
snippet from our running example in §3.2 (Code is simplified
for demonstration purpose).

4.5.1 Generating Exploit Templates

In this step, LYNX aims at generating the input data structure
that can reach the potentially vulnerable property. We denote
such structures as exploit templates since LYNX will specify
a symbolic value rather than a concrete value for the value
field of each hidden property. To generate the template, LYNX
needs to insert a property (with the discovered key name)
at the right position of the input. To figure out the insertion
position (what field of the input should be modified), LYNX
maintains a map between the insertion location of the label
and the property carrier O.

To illustrate, we reuse the example dis-
cussed in §3.2: The original input is
{"email":"aa@gmail.com", "passwd":"11"}. As dis-
cussed, LYNX needs to figure out the insertion position:
according to the mapping, any content added to the base
of the input will appear at the base of object at line 11 in
Figure 4. Then, LYNX inserts a property named constructor
according to the detected key name. Finally, the generated
template is {"email":"aa@gmail.com", "passwd":"11",
"constructor": SYMBOL}.

4.5.2 Exploring Attack Consequences

After generating the exploit template for each hidden property
candidate, LYNX starts to analyze its potential security con-
sequences. To this end, LYNX first symbolically executes the
hidden properties to explore all possible paths. Then, LYNX
pinpoints sensitive sinks along the discovered paths to decide
whether a hidden property is harmful or not.

According to the definition of harmful hidden property in

Table 2: Sensitive sinks monitored by LYNX.
Category ID Sink Example

Confidentiality
C1

sensitive database query The attacker leaks sensitive data from database by
methods manipulating the SQL.

C2
sensitive file system operation The attacker accesses confidential files by abusing the
methods filesystem APIs.

Integrity
I1

Critical built-in properties and The attacker modifies the built-in property constructor
code execution APIs to abuse property-based type checks.

I2
Final results of the module The attacker manipulate sanitization results to bypass
invocation security checks.

Availability
A1

Global methods/variables The attacker overwrites login function to crash the
authentication service.

A2
Looping conditions The attacker introduce an infinite loop to block the Node.js

event loop [29].

§4.1, we conclude six sensitive sinks from three perspectives:
confidentiality, integrity, and availability. As shown in Table 2,
different sinks are used for detecting different kinds of attack
consequences. In summary, sinks are implemented in two
ways. The first type is keyword-based sink. Based on our
observations, certain parameters of sensitive APIs can be a
common sink for hidden properties. Hence, we collected a
list of keywords by analyzing existing vulnerabilities reported
on known vulnerability database such as snyk vulnerability
DB and npmjs security advisories. We made our best effort to
collect as many sensitive APIs as possible. Currently, the list
contains 24 sinks: 11 filesystem operation APIs, 9 database
query methods and 4 code execution methods (The API list
will be released along with the source code of LYNX). While
the list may be not complete, it can be easily expanded over
time. Another type of sink is behavior-based sink. Many vul-
nerabilities are highly dependent on the code context. To
identify such vulnerabilities, we focus on the behaviors that
may abuse the application logic. Currently, LYNX has covered
the following three malicious behaviors. (1) Return value ma-
nipulation. For vulnerabilities aiming at manipulating critical
states, LYNX checks return values of the tested modules. If
its return value is controllable to attackers, LYNX flags it as
vulnerable. (2) Global variable tampering. If LYNX detects
that a hidden property can tamper certain global variable, it
will report it as a potential vulnerability. (3) Loop variable ma-
nipulation. For vulnerabilities aiming at corrupting the service
by causing an infinite loop, LYNX checks looping conditions
to pinpoint whether they can be manipulated through hidden
properties.

After a sensitive sink is identified, LYNX prepares proof-
of-concept exploits which aim at verifying whether a sink is
reachable for attack-controlled value. To collect exploit, we
use the input generated in the last step to re-executed the pro-
gram. If the sink can be reached, the input is reported along
with an attack indicator. The attack indicator is designed for
helping security analysts understand how the exploit affects
the sink. For different sinks, LYNX employs different rules to
generate indicators. For keyword-based sinks, LYNX records
what type of contents that can reach the sensitive function-
s/properties. For behavior-based sinks, LYNX compares exe-

Algorithm 1 Attack Exploration Algorithm
Require:

T = a set of exploit templates for the vulnerable module
m = the vulnerable module

Ensure:
PoC = (exp, ind) where expi is the exploit and indi is the corresponding
attack indicator.

1: U← {}
2: for all ti ∈ T do
3: paths← explore(m, ti)
4: P← P∪ {paths}
5: end for
6: for all pi ∈ P do
7: if has_sink(pi) then
8: exp = get_input(pi)
9: ind = execute(m, exp)

10: if reach_sink(ind) then
11: PoC← PoC ∪ {(exp, ind)}
12: end if
13: end if
14: end for

cution traces of attack input and benign input to pinpoint the
exploitation impact. For example, LYNX monitors the change
of global objects to observe the exploitability of A1 .

The whole attack exploration method is summarized in
Algorithm 1. The input to the search method is the tested
program m and the set of exploit templates T generated in
the previous step. The output of the method is the attack
proof of concept denoted by (E, I) where E is the sets of
the final exploits and I is the corresponding attack effect
indicators. In the first phase of the algorithm, it collects the
new paths discovered during symbolic execution and extracts
the concrete input and the path into U. In the second phase,
the algorithm examines each path Pi . After a sensitive sink is
detected, it will generate the corresponding exploit to reach
the sink. If LYNX detects that the sink is reachable, LYNX
will report both the exploit exp and the attack consequence
indicator ind.

To demonstrate the entire process, we apply the al-
gorithm to our running example. As shown Figure 4,
LYNX symbolizes the hidden property constructor in
line 14. During the execution, two other variables are also
symbolized due to the symbolic value propagation indicated
by the blue dotted line. By resolving the constraints for
the three symbolic values, LYNX finds two possible paths

(i.e., line 19 and line 21). Since the new path leads to the
change of final module return (i.e., object or null), the
exploitation hits I2 . As a result, LYNX constructs an exploit
{"email":SQLI, "passwd":"11", "constructor":false}

(SQLI stands for a SQL Injection payload). After inputting
the exploit to the program, LYNX collects the corresponding
indicator: It detects that the return value can be changed by
setting the constructor to false.

4.6 Implementation

We build LYNX as a Node.js application, and implement it by
employing several existing tools. In the first analysis phase of
LYNX (i.e., identifying hidden properties §4.4), we employ
Jalangi [42] to instrument target Node.js code for implement-
ing our label system. The instrumented Node.js code with
labels is dynamically executed to discover hidden property
carriers (§4.4.1). We apply Esprima [6] to generate AST (Ab-
stract Syntax Tree) for doing static analysis on identified prop-
erty carriers and extracting hidden properties (§4.4.2). In the
second analysis phase of LYNX (§4.5), we use ExpoSE [36] to
perform symbolic execution for determining the harmfulness
of discovered hidden properties and generating exploits.

To analyze web-based applications, we implement a
profiling-based pipeline that captures HTTP requests and gen-
erates corresponding test cases.

5 Evaluation

To assess the security impacts of HPA, we apply LYNX on a
set of real Node.js applications and modules widely used in
practice. In the following sections, we discuss our evaluation
results with three research questions:

• RQ1: Are the hidden properties prevalent in widely-used
Node.js programs? (§5.2.2)

• RQ2: Can LYNX effectively detect harmful hidden prop-
erties and generate corresponding exploits? (§5.2.3)

• RQ3: How do the discovered vulnerabilities and exploits
enlarge the attack surface of the Node.js ecosystem?
(§5.3, §5.5)

5.1 Data Set

Node.js has made great progress and there are already many
Node.js programs available. However, we find a large number
of them are rarely used or do not match our threat model.
Therefore, to reduce the workload of our analysis, we re-
strict our data set collection process. In particular, we collect
Node.js programs based on the following two criteria: (1) The
tested programs should be used to interacting with external
input, and their APIs should accept objects (via either JSON
or query-string serialization). (2) The tested programs should
be widely-used or continuously maintained.

Table 3: Overall detection results. The numbers within the
parentheses indicate the number of programs that contain
hidden properties. #PC, #HP, and #DA respectively denote
the number of property carriers, hidden property candidates,
and detected documented arguments.

Category Tested Programs Detection Results
#PC #HP #DA

Database 9 (8) 323 78 0
Input Validation 48 (30) 999 122 0

User Functionalities 34 (26) 584 156 24
Web 11 (7) 1269 95 0

To satisfy the first criteria, we collect programs from cat-
egories that are most likely to be exposed to input. These
categories include database, input validation, user functionali-
ties, and web-based application/middileware. To satisfy the
second criteria, we collect programs from known vendors
(e.g., MongoDB), and projects that have at least 1000+ star on
Github or 500 monthly downloads on npm (To guarantee the
volume of our samples, we might slightly lower this criteria
when all the popular programs have been selected).

In total, we collected 102 Node.js programs as our analy-
sis dataset. There are 91 Node.js modules and 11 web-based
programs. Among the 11 web-based programs, 4 are mini-
mal web frameworks/middlewares and 7 are complete web
applications.

5.2 Analysis Results
5.2.1 Overview

We run LYNX on a Ubuntu 18.04 machine equipped with Intel
Core i5-9600K (3.70GHz) and 32 GB memory. In total, we
detected 451 hidden property candidates and confirmed 15
previously unknown HPA vulnerabilities. By the timing of
writing, 10 CVEs have been assigned for our findings. More
than half of them are rated as “Critical” and “High” severity3

by NVD (national vulnerability database).
Among these vulnerabilities, two of them are identified

from complete web applications. The other 13 vulnerabilities
are identified from modules, which in total impact 20,402
dependent applications/modules. The Node.js community
pays great attention to our findings. An authoritative pub-
lic vulnerability database creates a new notion to track related
vulnerabilities.

5.2.2 Phase#1: Identifying Hidden Properties

To answer RQ1 (Are hidden properties prevalent in popular
Node.js programs?), we analyze how many (and what kind
of) hidden properties are detected from widely-used Node.js
programs.

Table 3 summarizes our detection results (Table 7 lists the
complete detection results). In Table 3, from the second col-

3The well-known heartbleed vulnerability was also rated as “High” sever-
ity.

Table 4: Exploit results of LYNX.
Category Reported Exploitable Missed
Database 2 2 1

Input Validation 7 4 2

User Functionalities 5 4 0

Web 1 1 1

umn “Tested Programs”, we can observe that hidden proper-
ties widely exist in all categories that are likely to be exposed
to external input. Overall, 69% (70/102) tested programs are
found to contain hidden properties.

The first two columns under “Detection Results” indicate
the number of property carriers hidden property candidates.
In total, LYNX identifies 451 hidden property candidates by
analyzing 3175 property carriers. We can observe that hid-
den property candidates widely exist in all categories of our
dataset. The last column under “Detection Results” shows
how many candidates are identified as documented arguments
by LYNX. To figure out the correctness of our documented
argument inferring rules, we compare the documented argu-
ments from their official documentations with our results. we
found our context-based rules correctly recognize all docu-
mented arguments from identified hidden properties.

Note that we drive our analysis based on the types of
Node.js programs being tested. For the 91 npm modules,
we directly reuse the use cases provided on their npm home-
pages as the test input. For the remaining 11 web-based pro-
grams, we manually interact with applications and generate
test cases with our profiling-based pipeline. LYNX analyzes
both JSON and query-string serialization channels for web-
base programs. 7 out of these 11 web-based programs support
both query-string and JSON serializations (in different APIs).

5.2.3 Phase#2: Exploring Attack Consequences

We assess the effectiveness (RQ2) of LYNX from the follow-
ing two aspects: (1) Does LYNX effectively pinpoint poten-
tial vulnerabilities from programs of different categories? (2)
Does LYNX successfully generate exploits that can directly
or be easily ported to introduce real-world attack effects?

Table 4 shows the summarized exploit result during the sec-
ond phase. In this table, the columns “Reported” record how
many sensitive sinks are reported to be vulnerable by LYNX.
The column “Exploitable” indicates how many of reported
sinks that LYNX automatically exploit and are manually con-
firmed to be real vulnerabilities. From the two columns, we
can observe that LYNX is capable of pinpointing potentially
vulnerable sinks from different types of programs. Moreover,
the “quality” of reported issues are good. Overall, we found
11 out of 15 reported vulnerabilities are confirmed to be vul-
nerable, and the other 4 cases are considered to be harmless.
Among the 4 cases, although some hidden properties do lead
to certain sensitive sinks, they are still constrained by the
program semantics and thus no significant attack effects can
be introduced. For instance, when LYNX exploiting a hidden

property from a validation library, it causes an execution ex-
ception and thus triggers sink I2 (final result manipulation).
However, since the exception is later handled by the program,
it does not enable any attack effects such as validation bypass.

The last column (“Missed”) of Table 4 records the hidden
properties that LYNX successfully detects (phase#1) but fails
to generate usable exploits (phase#2). To find out such hidden
properties, we manually examine all hidden property candi-
dates reported by LYNX. There are three types of failures.
First, some hidden properties have a particular constraint that
is not presented in the code semantics. For example, taffyDB
(a popular JavaScript database) has a hidden property that
can leak arbitrary data by forging as the internal index. How-
ever, the constraint associated with the index is in the memory
rather than in the code. Thus, LYNX cannot construct a valid
index even though the index is in an easily-guessable format
(e.g., T000002R000001). This kind of failure results from
the limitation of symbolic execution. To cover such failures,
fuzzing techniques may be a good complement to cover the
part that symbolic execution fails to analyze. We leave im-
proving our symbolic execution as our future work.

Another type of failures result from multi-constraint issues:
To exploit some hidden properties, some parameters of the
input must be set to certain values. Such failures can be ad-
dressed by extending LYNX to explore multiple variables (not
only hidden properties but also documented parameters) si-
multaneously. The last type of failure comes from the syntax
incompatibility problem. The incompatibility results from the
fact that our underlying instrumentation framework (Jalangi)
is not compatible with certain grammars after ECMAScript 6.
We mitigated this problem by down-compiling incompatible
programs with Babel [3] or avoiding instrumenting incompati-
ble code. To ease the process of addressing the incompatibility,
we built an automatic down-compiling tool, which will be
released together with LYNX.

5.3 Impact Analysis of Identified HPA Vulner-
abilities

In this section, we seek to answer RQ3 by understanding
how HPA vulnerabilities introduce serious attack effects into
the Node.js ecosystem. As shown in Table 5, we detected
15 HPA vulnerabilities. To fix these vulnerabilities, we have
made responsible disclosure and notified the vendors. They
reacted immediately. So far 10 vendors have confirmed the
vulnerabilities, and 7 of them have released corresponding
patches. Next, we will explain the security impacts of HPA
from the following three perspectives.
Confidentiality. We found that 4 of the identified vulnerabil-
ities (i.e., HP-1, HP-2, HP-3, and HP-14) impact confidential-
ity of the program (e.g., leaking sensitive information from
the database). The vulnerabilities HP-1 and HP-2 are found
from two widely-used mongoDB drivers. By exploiting HP-1
and HP-2, the attacker can force database to always return

Table 5: Vulnerabilities detected by LYNX (C: Confidentiality; I: Integrity; A: Availability).

#ID Product Name Affected API Description
Impact Attack Effects Disclosure

Downloads Dependents C I A status severity

1 mongoose findOne() SQL Injection 2,740,341 9,211 4 Fixed (CVE1) Critical

2 mongoDB driver find() SQL Injection 6,165,075 8,435 4 Fixed (CvE2) -

3 taffyDB query APIs SQL Injection 1,628,860 108 4 Confirmed (CVE3) High

4 class-validator validate() Bypass input validation 1,077,954 1,639 4 Confirmed (CVE4) Critical

5 jpv validate() Bypass input validation 481 1 4 Fixed (CVE5) Medium

6 jpv validate() Bypass input validation 481 1 4 Reported Medium

7 valib hasValue() Bypass input validation 479 8 4 Reported -

8 schema-inspector validate() Bypass input validation 35,783 104 4 Fixed (CVE6) High

9 schema-inspector sanitize() Bypass input validation 35,783 104 4 Fixed(CVE6) High

10 bson-objectid ObjectID() ID forging 142,562 298 4 Fixed (CVE7) High

11 component-type type() Type manipulation 943,555 140 4 Reported -

12 component-type type() Type manipulation 943,555 140 4 Reported -

13 kind-of kindOf() Type manipulation 196,448,574 458 4 Fixed (CVE8) High

14 cezerin getValidDocumentForUpdate() Order state manipulation 1871 – 4 Confirmed (CVE9) High

15 mongo-express addDocument() Denial of service 6,965 – 4 Fixed(CVE10) Medium

data/true regardless of the correctness of query condition.
This can be abused to leak sensitive information or bypass
access control. For example, an attacker might log into other
user’s accounts by forcing the authentication result to be true
(we will demonstrate a real-world case of this vulnerability
in §5.5). The vulnerability HP-3 is found from taffyDB. This
is a serious universal SQL Injection that can be abused to
access arbitrary data items in the database: It is found that a
hidden property can forge as taffyDB’s internal index ID. If
an index ID is found in the query, taffyDB will ignore other
query conditions and directly return the indexed data item.
Moreover, the index ID is in an easily-guessable format (e.g.,
T000002R000001), so that attackers can use this vulnerabil-
ity to access any data items in the DB. Vulnerability HP-12
is found from cezerin, an eCommerce web application. It
is found that a hidden property can modify the critical data
stored in database (i.e., payment status ispaid).

Integrity. We found that 10 of the identified vulnerabilities
(i.e., HP-4, HP-5, HP-6, HP-7, HP-8, HP-9, HP-10, HP-11, HP-
12, and HP-13) compromise the integrity of Node.js applica-
tions. 4 widely-used input validation modules are impacted
by HPA. Our running example, class-validator (HP-4), allows
attackers to overwrite the format schema object, which leads
to the arbitrary input validation bypass. Jpv (HP-5 and HP-6)
checks the type of unsafe objects on the their prototype. How-
ever, since HPA can modify properties in the prototype, the
validation result of jpv can be manipulated. The other three
validation bypass vulnerabilities are found from one API (HP-
6) from valib and two APIs (HP-7 and HP-8) from schema-
inspector: By modifying hasOwnProperty function under the
unsafe object’s prototype, security checks can be skipped.
Note that these three cases have limited exploit scenario: At-

tackers needs to pass valid function definitions, which is not
a widely supported feature [8].

The other 4 vulnerabilities (HP-10, HP-11, HP-12, and HP-
13) that impact program integrity are from user functionalities
modules. These 4 vulnerabilities are exploited in a similar
way: By manipulating some critical properties under the input
object, attackers can manipulate the final result of the module
invocation. Such manipulation might introduce serious risk to
the application. For example, clone-deep, an object cloning
module used in 1,822,028 projects according to Github, uses
vulnerable kind-of (HP-13) to perform type checking before
cloning. If the variable var to be cloned is detected as array,
clone-deep recursively calls itself var.length times to clone
all elements under var. With HP-13, a malicious object can
forge as an array with a very large length. When cloning
such an object, clone-deep will go into a super big loop, and
thus freeze the whole application (Time-consuming tasks can
block Node.js applications due to its single-thread model).
Availability. We found that the availability of 1 web frame-
work (i.e., HP-15) can be affected by HPA. This vulnerability
is detected from mongo-express, a web-based application. It
is found that a hidden property can introduce an infinite loop
to the application, which blocks the whole application. We
will include more details of the case in §5.5.
Community Impact. Our findings have been corroborated by
the Node.js community. To help developers be aware of this
new risk, we proposed a new notion should be used to describe
and track related issues. An authoritative public vulnerability
database maintained by snyk has accepted the proposal and
starts using the notion in related security issues [10].
Remark. Based on the impact analysis, we posit that the
HPA attack indeed enlarges the attack surface of the Node.js

ecosystem. The claim is supported by the following two in-
sights. (1) By establishing unexpected data dependencies to
internal objects in the application, the HPA attack effectively
compromises previously unreachable program states and in-
troduces different kinds of attack effects. (2) Classic defense
techniques (e.g., input validation) can not mitigate the HPA.
As shown in Table 5, some widely-used validation modules
are vulnerable to the HPA attack.

5.4 Analysis Coverage and Performance
We measure the code coverage of LYNX for each Node.js
program based on ExpoSE [36]’s coverage monitoring, which
computes ‘LoC being executed’ / ‘total LoC in executed files’
(dependencies not counted). We discuss our coverage mea-
surement results below, based on the different types of tested
Node.js programs: modules and web-based programs.

For Node.js modules, the code coverage varies (i.e., 10%
- 80%). While a large portion of modules achieve decent
coverage (more than 40%), we argue the code coverage does
not necessarily indicate the effectiveness of LYNX: To find
practical vulnerabilities, we selectively test APIs that match
our threat model (likely to be exposed to external user and
accepting objects). As a result, even though test cases are
available for most APIs, we are not blindly testing all of them.
For instance, if an API does not accept parameters at all,
we will not include it into our test, and the code coverage
contribute by such API testing does not help us vetting HPA
from tested programs.

For web-based programs, LYNX achieves 21% code cov-
erage on average. We find this is because web applications
usually have a large number of functionalities/APIs, and our
profiling-based testing may not cover all of them. To help
LYNX discover more web APIs, incorporating active web
scanners [2] could be a promising future work.

Besides code coverage, we also measure the running time
of each phase. As an offline tool, LYNX achieves reasonable
analysis speed: For detecting hidden properties, it typically
takes no more than 10 seconds to analyzing one API (90%
cases). For very large programs such as web applications,
the analysis may take more than 200 seconds per API (no
more than 10 cases). For exploiting hidden properties, it takes
longer time because LYNX needs to explore multiple paths
for each candidate. Typically, it takes around 50 seconds per
hidden property. Detailed results can be found at §A.3.

5.5 Case Studies
Accessing Confidential User Data. LYNX reports a harmful
hidden property (_bsontype) from mongoDB Node.JS driver.
This property is used to decide the query type and should not
be provided by input. However, it is found that mongoDB
allows input to modify this property via HPA. Since mon-
goDB handles query objects according to pre-defined types.

Listing 2 The online game is vulnerable to HPA because it
calls vulnerable mongoDB APIs to handle input.

1 GameServer.loadPlayer = function(socket,id){
2 GameServer.server.db.collection('players').findOne({
3 _id: new ObjectId(id)},
4 function(err,doc){...}
5 });
6 };

The attacker can specify an unknown _bsontype (e.g., aaa) to
force mongoDB not serializing certain objects. For example,
this can be abused to force the query result to be always true
(i.e., by not serializing the query filer). By exploiting this
vulnerability, an attacker can launch unauthorized access to
confidential data in the mongoDB.

To demonstrate one of the attack vectors, we use Phaser
Quest, an online game that uses the vulnerable mongoDB
driver module. As shown in Listing 2, the program load-
s/deletes user profile by a user-provided secret identifier (id).
By abusing the discussed vulnerability, the attacker can force
the database to return a valid user regardless of the correctness
of the identifer. By doing this, the attacker can log in/delete
arbitrary player’s accounts.

We have made responsible disclosure to MongoDB team.
They has patched the vulnerability and acknowledged us at
their security advisories.
Blocking the event handler. Since Node.js is based on a
single-thread model, the availability of its event handler is
very critical and has been discussed a lot [29, 37, 43]. In the
second case, we would like to demonstrate how HPA can
attack the event handler and thus freeze the entire program.

LYNX reports a harmful hidden property (toBSON) from
mongo-express, a web-based mongoDB admin interface. By
abusing this property, an authenticated user issues a time-
consuming task to block the event handler of Node.js. As
shown in the upper part of Listing 3, a hidden property toBSON
is identified in line 3. By tracking the data flow of this property,
we found that it reaches a sensitive sink [15] in line 12, which
is for executing code in a sandbox. Hence, the attacker can
pass a time-consuming function (e.g., an infinite loop) to
block the event handler.

After receiving our vulnerability report, the project team
confirmed it immediately and added this issue to their security
advisories. By the time of paper writing, we are working
together with them on the bug fixing.

6 Discussion

Countermeasures. We conclude three major countermea-
sures against HPA. For example, one of them is validating
input objects. Since the first step of HPA is injecting additional
properties, removing unwanted (malicious) properties could
be a feasible mitigation. Due to the page limit, more details

Listing 3 HPA impacts the availability of this program by
attacking the unique single-thread model of Node.js.

1 // code from bson module
2 if (object.toBSON) {
3 object = object.toBSON();
4 }
5

6 // code from mongodb-query-parser module
7 const SANDBOX = new SaferEval(FILTER_SANDBOX);
8 SANDBOX.runInContext(input);

about the three approaches are discussed in Appendix§A.1.
Limitations. First of all, LYNX needs external input (i.e.,
module test cases or user interactions on the web) to trigger
analysis. Since APIs of different modules/applications have
different context dependencies and parameter formats, it is
hard to automatically infer and resolve these prerequisites. For
example, during our evaluation, we found that we need to log
into the tested web program to access certain APIs. To address
the issue, we have implemented a pipeline that automatically
replays and mutates API invocations. To test web-based pro-
grams, security analysts just need to act like normal users
to perform interactions. In the future, we are considering in-
troducing an automatic input format reasoning component
to LYNX to ease the input generation process. Second, like
many other dynamic analysis tools, LYNX may have false
negatives. For example, it is possible that the test input we use
does not explore all the branches of certain tested programs.
To improve coverage, we can combine LYNX with fuzzing
techniques. Third, Lynx does not cover all input channels ex-
isted in the Node.js ecosystem: In the ecosystem, different
programs may use distinct methods/code implementations
to share objects, so it is difficult to systematically cover all
channels and it is not the focus of this paper. While we ac-
knowledge that Lynx does not cover all input lines, it does
cover the two most popular methods and can support a large
number of programs. As future work, we are considering to
support more input channels.

7 Related Work

7.1 Vulnerabilities of Node.js Ecosystem
Recently, researchers have discovered many security issues in
the Node.js ecosystem. Existing offensive research in Node.js
can be divided into two categories: attacks launching from
external users and attacks launching from internal modules.
In the first category, Ojamaa et al. [37] studies the security
of Node.js and discussed potential risks such as command
injection attack. Synode [44] further studies command injec-
tion attack and presents an automatic mitigation approach.
Staicu et al. [43] show how ReDoS (regular expression denial
of service) affects real Node.js websites. Davis et al. [29]
identify and mitigate a new type of denial of service (DoS)

attack, Event Handler Poisoning (EHP), which targets the
event-driven architecture of Node.js. Arteau et al. identify
prototype pollution [12] (PP), a security risk that tampers
object prototypes in Node.js applications. PP and HPA dif-
fer from the following two aspects. (i) Attack behavior: PP
introduces attack effects by tampering one special kind of
JavaScript data type (prototype), while HPA does not mod-
ify prototype. (ii) Exploit condition: The exploitation of PP
requires the attacker to explicitly assign a value to the pro-
totype. For example, the code obj[__proto__] = input
is vulnerable to PP while Object.assign(obj, input) is
not. In addition, we can observe that data serialization is not
necessary for PP. However, HPA does not require prototype
assignment. In contrast, it passes the attack payload through
data serialization. Because of these differences, the above
counterexample of PP is vulnerable to HPA since input may
carry “hidden” properties and propagates them to obj.

In the second category [23, 38, 49], researchers study how
malicious/buggy third-party modules impact the Node.js ap-
plications. Brown et al. [23] detect and prevent binding-layer
bugs in both server-side and browser-side platforms. Patra
et al. [38] define and classify JavaScript module conflicts
and propose ConflictJS to detect such risks. Zimmermann et
al. [49] present a large-scale study on the Node.js ecosystem
and identify several weak spots in the ecosystem. In con-
trast to these vulnerabilities, HPA does not require planting
malicious code into the victim application.

7.2 Analysis of JavaScript Code

Researchers also developed tools to help detect JavaScript
bugs/vulnerabilities. Many existing analysis tools [25, 31, 34,
36, 38–40, 45, 47] are based on information flow analysis. For
example, Stock et al. [47] propose dynamic taint tracking to
prevent DOM-based XSS. Lekies et al. [34] propose a system
that leverages byte-level dynamic taint tracking to detect and
validate DOM-based XSS. Typedevil [39] performs variable-
level information flow analysis to report inconsistent types.
Although LYNX also performs data flow analysis, it subtly
differs from existing tools [39, 45] by using a new labeling
and tracking method to analyzes HPA related data structures
(e.g., property carriers). Arteau et al. proposes a fuzzing ap-
proach to detect prototype pollution [12], which injects a static
payload into the test input and flags vulnerabilities if any pro-
totypes are modified. However, the fuzzer cannot be used to
detect HPA because (1) HPA does not necessarily need to
modify the prototype so that the fuzzer will not report any
vulnerabilities; (2) Hidden properties are internal states with
various random name variable (e.g., _bsontype), so syntactic
analysis is essential when we want to extract these hidden
properties. However, the fuzzer does not have the capability
to extract these syntax information (The fuzzer only runs with
the fixed input __proto__).

There are also tools in other language platforms designed

to detect security issues similar to HPA. Dahse et. al [28]
proposed a static object-sensitive approach to detect PHP
objection injection. However, this approach cannot be used
to detect HPA: (1) The analysis is designed for analyzing
object-oriented code, and it relies on the object-oriented pro-
gramming (OOP) semantics such as new() to guide its analy-
sis. However, many of our analysis targets are not OOP; (2)
The approach focuses on exploiting potentially vulnerable
magic methods, while HPA does not have a corresponding
sink. Cristalli et. al [26] proposed a sandbox-based approach
for preventing Java deserialization vulnerabilities. The pro-
posed approach traces benign deserialization executions and
detects suspicious Java method invocation based on the pre-
vious execution traces. Since HPA exploits logic bugs rather
than arbitrary command execution bugs, this approach is not
suitable for mitigating HPA.

7.3 Security vulnerabilities of Browser-side
JavaScript

Security researchers also discovered many vulnerabilities the
browser-side scripts. One of the most important classes of
browser-side vulnerabilities is Cross-site scripting (XSS) [27,
30, 33–35, 41, 46, 48]. Recently, Lekies et al. [35] systemati-
cally investigate and mitigate a class of vulnerability, Cross-
Site Script Inclusion attack (XSSI). XSSI is a browser-side at-
tack that can leak sensitive user data by including a script from
an attacker-controlled domain. Fass et al. [30] propose Hi-
deNoSeek, a general camouflage attack that evades syntactic-
based malware detectors. Steffens et al. [46] propose Persis-
tent Client-Side XSS attack and investigate its severity on
the Web. Schewarz et al. [41] propose two new side-channel
attacks in JavaScript to automatically infer host information.
In contrast to related work, we focus on vulnerabilities in the
server-side Node.js programs.

8 Conclusion

In this paper, we conduct the first systematic study on the
object sharing of Node.js programs and design a new attack
named hidden property abusing. By exposing previously un-
reachable program states to adversaries, the new attack en-
larges the attack surface of Node.js. The new attack surface
leads to the discovery of 15 zero-day vulnerabilities, all of
which can be exploited to introduce serious attack effects. To
detect HPA, we build LYNX, a novel vulnerability finding and
verification tool that combines static and dynamic analysis
techniques to pinpoint and exploit vulnerable internal objects
in Node.js programs. Using LYNX against 102 widely-used
Node.js programs, we show that LYNX can effectively detect
HPA vulnerabilities.

Acknowledgement

We would like to thank our paper shepherd Giancarlo Pelle-
grino and the anonymous reviewers, for their insightful feed-
back that helped shape the final version of this paper. We
also thank Yuhang Wu for his contribution during the early
stage of the project. This material was supported in part by
the Office of Naval Research (ONR) under grants N00014-17-
1-2895, N00014-15-1-2162, N00014-18-1-2662 and N00014-
20-1-2734, the Defense Advanced Research Projects Agency
(DARPA) under contract HR00112090031, and the National
Science Foundation (NSF) under grants 1700544, 1617985.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflects the views of ONR, DARPA, or NSF.

References
[1] 2018 Node.js User Survey Report. https://nodejs.org/en/user-
survey-report.

[2] Acunetix: Web Application Security Scanner. https://www.
acunetix.com/.

[3] babel: A JavaScript Compiler. https://babeljs.io/.

[4] cookies package on npm. https://www.npmjs.com/package/
cookies.

[5] Deserialization of Untrusted Data. https://cwe.mitre.org/data/
definitions/502.html.

[6] ECMAScript parsing infrastructure for multipurpose analysis. https:
//esprima.org/.

[7] Electron (software framework). https://en.wikipedia.org/
wiki/Electron_(software_framework).

[8] Functions in JSON. https://teamtreehouse.com/community/
functions-in-json.

[9] Improperly Controlled Modification of Dynamically-Determined Ob-
ject Attributes. https://cwe.mitre.org/data/definitions/
915.html.

[10] Internal Property Abusing in snyk. https://snyk.io/vuln/SNYK-
JS-BSON-561052.

[11] npm most depended upon packages. https://www.npmjs.com/
browse/depended.

[12] Prototype pollution attacks in NodeJS applications. https://www.
youtube.com/watch?v=LUsiFV3dsK8.

[13] routing-controllers: A Typescript Routing Controllers Framework.
https://github.com/typestack/routing-controllers.

[14] Ruby mass assignment vulnerability on Github. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2012-2054.

[15] safe-eval Documentation. https://www.npmjs.com/package/
safe-eval.

[16] Skype, Slack, other Electron-based apps can be easily
backdoored. https://arstechnica.com/information-
technology/2019/08/skype-slack-other-electron-based-
apps-can-be-easily-backdoored/.

[17] StackOverflow Developer Survey. https://insights.
stackoverflow.com/survey/2019.

[18] useragent package on npm. https://www.npmjs.com/package/
useragent.

[19] V8 JavaScript Engine. https://v8.dev/.

https://nodejs.org/en/user-survey-report
https://nodejs.org/en/user-survey-report
https://www.acunetix.com/
https://www.acunetix.com/
https://babeljs.io/
https://www.npmjs.com/package/cookies
https://www.npmjs.com/package/cookies
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://esprima.org/
https://esprima.org/
https://en.wikipedia.org/wiki/Electron_(software_framework)
https://en.wikipedia.org/wiki/Electron_(software_framework)
https://teamtreehouse.com/community/functions-in-json
https://teamtreehouse.com/community/functions-in-json
https://cwe.mitre.org/data/definitions/915.html
https://cwe.mitre.org/data/definitions/915.html
https://snyk.io/vuln/SNYK-JS-BSON-561052
https://snyk.io/vuln/SNYK-JS-BSON-561052
https://www.npmjs.com/browse/depended
https://www.npmjs.com/browse/depended
https://www.youtube.com/watch?v=LUsiFV3dsK8
https://www.youtube.com/watch?v=LUsiFV3dsK8
https://github.com/typestack/routing-controllers
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2054
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2054
https://www.npmjs.com/package/safe-eval
https://www.npmjs.com/package/safe-eval
https://arstechnica.com/information-technology/2019/08/skype-slack-other-electron-based-apps-can-be-easily-backdoored/
https://arstechnica.com/information-technology/2019/08/skype-slack-other-electron-based-apps-can-be-easily-backdoored/
https://arstechnica.com/information-technology/2019/08/skype-slack-other-electron-based-apps-can-be-easily-backdoored/
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://www.npmjs.com/package/useragent
https://www.npmjs.com/package/useragent
https://v8.dev/

[20] Proceedings of the 23rd USENIX Security Symposium (Security), San
Diego, CA, August 2014.

[21] Proceedings of the 27th USENIX Security Symposium (Security), Balti-
more, MD, August 2018.

[22] Proceedings of the 2019 Annual Network and Distributed System Secu-
rity Symposium (NDSS), San Diego, CA, February 2019.

[23] Fraser Brown, Shravan Narayan, Riad S Wahby, Dawson Engler, Ranjit
Jhala, and Deian Stefan. Finding and Preventing Bugs in JavaScript
Bindings. In Proceedings of the 38th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2017.

[24] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K.
Iyer. Non-Control-Data Attacks Are Realistic Threats. In Proceedings
of the 14th USENIX Security Symposium (Security), Baltimore, MD,
August 2005.

[25] Ravi Chugh, Jeffrey A Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for javascript. ACM Sigplan Notices, 44(6):50–62,
2009.

[26] Stefano Cristalli, Edoardo Vignati, Danilo Bruschi, and Andrea Lanzi.
Trusted execution path for protecting java applications against deserial-
ization of untrusted data. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 445–464. Springer, 2018.

[27] Johannes Dahse and Thorsten Holz. Static Detection of Second-
order Vulnerabilities in Web Applications. In Proceedings of the 23rd
USENIX Security Symposium (Security) [20].

[28] Johannes Dahse, Nikolai Krein, and Thorsten Holz. Code reuse attacks
in php: Automated pop chain generation. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
pages 42–53, 2014.

[29] James C Davis, Eric R Williamson, and Dongyoon Lee. A Sense of
Time for JavaScript and Node.js: First-class Timeouts as a Cure for
Event Handler Poisoning. In Proceedings of the 27th USENIX Security
Symposium (Security) [21].

[30] Aurore Fass, Michael Backes, and Ben Stock. HideNoSeek: Camou-
flaging Malicious JavaScript in Benign ASTs. In Proceedings of the
26th ACM Conference on Computer and Communications Security
(CCS), London, UK, November 2019.

[31] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. DLint:
Dynamically Checking Bad Coding Practices in JavaScript. In Proceed-
ings of the International Symposium on Software Testing and Analysis
(ISSTA), Baltimore, Maryland, July 2015.

[32] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek
Saxena, and Zhenkai Liang. Data-Oriented Programming: On the
Expressiveness of Non-control Data Attacks. In Proceedings of the
37th IEEE Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2016.

[33] Adam Kieyzun, Philip J Guo, Karthick Jayaraman, and Michael D
Ernst. Automatic Creation of SQL Injection and Cross-site Scripting
Attacks. In Proceedings of the 29th International Conference on Soft-
ware Engineering (ICSE), Vancouver, British Columbia, Canada, May
2009.

[34] Sebastian Lekies, Ben Stock, and Martin Johns. 25 Million Flows
Later: Large-scale Detection of DOM-based XSS. In Proceedings of
the 20th ACM Conference on Computer and Communications Security
(CCS), Berlin, Germany, October 2013.

[35] Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. The
unexpected dangers of dynamic javascript. In 24th {USENIX} Security
Symposium ({USENIX} Security 15), pages 723–735, 2015.

[36] Blake Loring, Duncan Mitchell, and Johannes Kinder. Sound regular
expression semantics for dynamic symbolic execution of javascript. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 425–438. ACM, 2019.

[37] Andres Ojamaa and Karl Düüna. Assessing the Security of Node.js
Platform. In 2012 International Conference for Internet Technology
and Secured Transactions, pages 348–355. IEEE, 2012.

[38] Jibesh Patra, Pooja N Dixit, and Michael Pradel. Conflictjs: Finding and
Understanding Conflicts between JavaScript Libraries. In Proceedings
of the 40th International Conference on Software Engineering (ICSE),
Gothenburg, Sweden, May – June 2018.

[39] Michael Pradel, Parker Schuh, and Koushik Sen. Typedevil: Dynamic
type inconsistency analysis for javascript. In Proceedings of the 37th
International Conference on Software Engineering-Volume 1, pages
314–324. IEEE Press, 2015.

[40] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song.
FLAX: Systematic Discovery of Client-side Validation Vulnerabilities
in Rich Web Applications. In Proceedings of the 17th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
February–March 2010.

[41] Michael Schwarz, Florian Lackner, and Daniel Gruss. JavaScript Tem-
plate Attacks: Automatically Inferring Host Information for Targeted
Exploits. In Proceedings of the 2019 Annual Network and Distributed
System Security Symposium (NDSS) [22].

[42] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
Jalangi: a selective record-replay and dynamic analysis framework for
javascript. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 488–498. ACM, 2013.

[43] Cristian-Alexandru Staicu and Michael Pradel. Freezing the web:
A study of redos vulnerabilities in javascript-based web servers. In
27th {USENIX} Security Symposium ({USENIX} Security 18), pages
361–376, 2018.

[44] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits.
SYNODE: Understanding and Automatically Preventing Injection At-
tacks on Node.js. In Proceedings of the 2018 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Febru-
ary 2018.

[45] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael
Pradel, and Andrei Sabelfeld. An Empirical Study of Information Flows
in Real-World JavaScript. In Proceedings of the 14th ACM SIGSAC
Workshop on Programming Languages and Analysis for Security, pages
45–59, 2019.

[46] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. Don’t
Trust The Locals: Investigating the Prevalence of Persistent Client-Side
Cross-Site Scripting in the Wild. In Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS) [22].

[47] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Mar-
tin Johns. Precise Client-side Protection against DOM-based Cross-site
Scripting. In Proceedings of the 23rd USENIX Security Symposium
(Security) [20].

[48] Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebastian Lekies, and Mar-
tin Johns. From Facepalm to Brain Bender: Exploring Client-side
Cross-site Scripting. In Proceedings of the 22nd ACM Conference
on Computer and Communications Security (CCS), Denver, Colorado,
October 2015.

[49] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and
Michael Pradel. Small World with High Risks: A Study of Security
Threats in the NPM Ecosystem. In Proceedings of the 27th USENIX
Security Symposium (Security) [21].

A Appendix

A.1 Countermeasures
Validating Input Objects. First of all, objects generated from input should
be validated. Since the first step of the HPA attack is to inject additional
properties into the input data, one straightforward mitigation is to remove

Table 6: Examples of S and their meanings
Scope Refers to

* the carrier is globally visible to the whole script

login_fun the carrier is only visible to function login

login_fun.is_admin_fun
the carrier is only visible to a nested function is_admin

defined in function login

anon.12.1.12.5._fun
the carrier is visible to an anonymous function locating

at line 12 from column 1 to column 5

unwanted (malicious) properties by performing input validation. There are
two possible validation methods. The first method is using a blacklist to
prevent properties that have the same name as the critical internal properties
(e.g., constructor) from entering the application. The advantage of this method
is that it is flexible to deploy and requires no major changes to the whole
module. Several vulnerabilities we reported (e.g., CVE1 and CVE7) have
been patched by this method. The disadvantage of this method is that it
may be bypassed due to an incomplete blacklist. The second method is to
enforce a whitelist input format check for every API, which means it only
permits known properties entering into the program. The advantage is that it
ensures better input validation coverage, while the disadvantage is that it is
more difficult to deploy since developers have to manually declare the input
schema case by case.

However, we should be aware that input validation is not the cure for HPA,
because the validation module itself might also be vulnerable to HPA. As
shown in Table 5, 5 HPA vulnerabilities are identified from input validation
modules. Hence, we suggest that the input validation module should be
carefully designed (e.g., by following the other two suggestions below).
Avoiding packing multiple variables into one argument. Second, we ad-
vocate that developers should avoid putting different variables into one object
and uses it as an argument when invoking APIs. This is a very common
programming style in Node.js because it complies with the classic class
model in Object-oriented programming (OOP) which treats a variable as a
certain instance that consists of different members. For example, we found
that exposed APIs (e.g., findOne()) of mongoDB’s driver packs all query
data as a single object (i.e., query). However, this practice could be risky in
Node.js because: (1) Unlike other OOP languages that have member access
control (e.g., modifiers like private and public in C++ and Java), JavaScript
enforces no property access control for its objects. Hence, arbitrary internal
properties can be overwritten when a user-controlled object is copied/as-
signed to certain internal objects. (2) Developers adapting this style are likely
to define some properties (e.g., userRole) within the objects to store their
meta information. An attacker might forge these properties to introduce se-
curity risks. For example, mongoDB driver differentiates differentiate types
of query according a self-defined property _bsontype. It turns out that this
self-defined property can be forged to leak data from the database.
Isolating internal program state from input. It is important to put unsafe
external objects and internal state objects into different domains so that they
will not affect each other. For example, one potential solution is to label data
from the external interfaces (e.g., Network APIs) and perform validation
when overwriting properties in internal objects at the Node.js runtime engine
level. Though this solution fundamentally mitigates HPA, it also has two
disadvantages. First, it incurs overhead into the runtime engine because
additional data structures need to be attached to the object implementation.
Second, in some scenarios, developers do want external input to change
certain properties of an internal object. Hence, developers will have to add
additional code to declare a permission for such cross-domain behaviors if
this feature is implemented in the engine.

A.2 Scope Representation in LYNX

Table 6 shows several examples of the scope representations in LYNX and
the corresponding meanings.

A.3 Complete Result
Table 7 shows the complete detection results of the 102 tested Node.js
programs.

Table 7: Complete detection results. Downloads with (g) are counted from github, the major release channel of these projects.

Category Program Version LOC Downloads Coverage Time Detection Results
Detection Exploitation #PC #HPC

Database json-records 1.0.5 169 52 0.34 12s 37.3s 15 1
keyv 4.0.0 93 12,781,403 0.64 2.1s 52.5s 10 3
levelup 4.3.2 353 1,162,162 0.31 6.1s 39.2s 28 2
LokiJS 1.5.8 6372 1,025,170 0.10 27.2s 49.4s 53 3
Lowdb 1.0.0 486 857,106 0.60 540.7s N/A 7 0
mongoDB 3.3.3 22256 6,165,075 0.28 329.8s 74.2s 63 8
mongoose 5.8.1 41750 2,941,692 0.19 359.2s 328.1s 92 41
mongoist 2.4.0 2041 10,646 0.39 60.3s 239.7s 40 14
Taffydb 2.7.3 1478 1,628,860 0.12 10.9s 49.6s 15 6

Input Validation Ajv 6.10.2 10997 101,694,541 0.36 240s N/A 6 0
AnotherJsonSchema 3.8.2 10994 267 0.15 2.2s N/A 18 0
allow 2.1.0 658 132732 0.55 7.6s 17.1s 7 8
async-validator 3.4.0 1972 2,502,423 0.29 3.5s N/A 17 0
async-validate 1.0.1 4349 1,731 0.41 2.6s 14.6s 38 5
amanda 1.0.1 9281 30,392 0.22 2s N/A 28 0
assert-args 1.2.1 1792 146 0.35 13s 17.7s 21 2
class-validator 0.9.1 5668 1,077,954 0.45 1409.0s 91.4s 42 8
congruence 1.6.11 10268 146 0.14 446.5s N/A 48 0
Consono 1.0.6 564 1,107 0.43 8.8s 91.l7s 18 5
DataInspector 0.5.0 1349 29 0.41 33.3s 447s 11 4
enforce 0.1.7 1546 14,047 0.29 3s 15s 14 1
fastest-validator 1.7.0 2315 130,804 0.37 6.4s N/A 3 0
Forgjs 1.1.11 3562 167 (g) 0.61 16.1s 354.9s 31 4
fieldify 1.2.2 2189 73 0.49 2.2s 41.0s 14 2
fefe 2.0.2 729 146 0.52 1.2s 55.8s 7 1
hannibal 0.6.2 2847 2,668 0.31 3.1s 21.8s 46 4
have 0.4.0 579 1,591 0.55 1.2s 15.3s 3 3
indicative 7.3.0 311 31,235 0.30 2.8s N/A 4 0
isMyJsonValid 2.20.0 554 6,428,255 0.34 1.5s N/A 4 0
is-extendable 1.0.1 8 103,501,348 0.36 1.0s 13.9s 3 1
is2 2.0.6 1969 2,944,841 0.28 1.2s N/A 4 0
joi 16.1.7 7435 12,575,750 0.31 142s N/A 16 0
jpv 2.0.1 206 481 0.20 1.6s 55.4s 25 14
Jsonschema 1.2.4 335 53,884,848 0.18 3.5s 57.5s 39 8
json-gate 0.8.23 732 2,228 0.29 1.3s 28.4s 18 2
legalize 1.3.0 2297 1,745 0.43 54.2s 55.3s 23 1
Object-inspect 1.7.0 701 40,736,308 0.44 5.6s 104.6s 31 6
obj-schema 1.6.2 511 207 0.24 5.6s N/A 23 0
OW 0.15.0 311 624,684 0.37 36.9s 43.5s 16 1
Property-Validator 0.9.0 4130 1,242 0.35 4.5s N/A 15 0
schema-inspector 1.6.8 5161 35,783 0.24 51.0s 53.8s 48 8
satpam 4.4.1 57151 4,256 0.51 47.8s 201.9s 27 1
typeof-properties 3.1.3 1047 1,184 0.43 2.6s N/A 20 0
typical 6.0.1 192 2,629,970 0.13 1.2s N/A 6 0
treat-like 1.0.0 767 47,832 0.36 0.9s N/A 31 0
themis 1.1.6 5081 942 0.26 45.7s 62.7s 28 1
validate.io-object 1.0.4 6 15,176 0.31 0.9s N/A 6 0
ValidatorJS 3.18.1 68823 106,038 0.19 3.9s 48.7s 33 3
validate.js 0.13.1 933 662,549 0.19 5.2s N/A 21 0
validate-arguments 0.0.8 725 1,788 0.08 257.4s 319.4s 21 3
validated 2.0.1 1561 2101 0.49 4.3s 72.4s 18 5
valida 2.4.1 2704 731 0.42 2.2s 57.1s 16 8
validall 3.0.17 1202 341 0.33 2.3s 50.6s 31 6
Valib 2.0.0 327 479 0.27 2.3s 51.2s 15 1
value-schema 3.0.0 1909525 1,900 0.46 2.1s N/A 31 0
Yup 0.27.0 2088 4,455,577 0.46 8.0s 24.2s 42 5
Z-schema 4.2.2 33221 2,434,914 0.29 15.6s 38.8s 19 1

User functionalities Avsc 5.4.16 6508 108,450 0.18 19s N/A 9 0
Analytics 3.4.0 185 105,510 0 * 19.7s 51.3s 20 8
bson-objectid 1.3.0 259 142,562 0.21 1.1s 40.7s 5 4
Cookies 0.8.0 503 2,549,728 0.46 46.7s 97.4s 6 1
component-type 1.2.1 2893 943,555 0.55 4.3s 48.0s 8 5

* Our underlying instrumentation (Jalangi) does not detect any code execution in the module, which results in the 0 here. In fact, code in the module
does execute and we even detect hidden properties.

Category Program Version LOC Downloads Coverage Time Detection Results
Detection Exploitation #PC #HPC

check-types 11.1.2 573 9,983,393 0.36 26.5s 225.7s 88 2
DumperJS 1.3.1 284 6,797 0.57 2.9s 580.4s 28 18
deep-extend 0.6.0 83 39,395,270 0.35 5.5s 45.0s 3 6
deep-copy 1.4.2 60 402,884 0.44 1.2s 49.2s 22 3
deepmerge 4.2.2 325 39,856,800 0.58 4.9s 53.3s 12 3
fast-clone 1.5.13 87 23,424 0.43 1.3s 44.2s 11 4
fast-stringify 2.0.0 184 33,4536 0.34 1.3s N/A 4 0
immutability-helper 3.0.1 259 1,395,820 0.32 0.8s N/A 10 0
iap 1.1.1 1250 8,227 0.32 0.5s 17.5s 12 5
Js-yaml 3.13.1 5719 60,478,990 0.24 47.8s 172.4s 40 14
jsonfile 5.0.0 110 5,637 0.29 1.5s N/A 42 0
js2xmlparser 4.0.1 364 2,796,779 0.47 67.4s 94.1s 45 2
json-to-pretty-yaml 1.2.2 163 1,052,996 0.34 2.1s 5.1s 19 2
just-extend 4.1.0 41 7,891,960 0.44 1.2s 13.46s 10 3
kind-of 6.0.2 97 196,448,574 0.56 1.2s 49.1s 16 16
mailgun-js 0.22.0 6569 1,200,173 0.61 614.0s 485.9s 22 6
map-obj 4.1.0 76 51,062,828 0.78 1.0s 26.8s 14 6
merge-deep 3.0.2 162 12,158,104 0.58 2.5s 15.2s 6 5
mongo-parse 2.1.0 1435 1,291 0.13 1s N/A 15 0
mongodb-extjson 3.0.3 8845 42,141 0.20 6s 75.5s 23 9
node-cache 5.1.0 618 2,917,617 0.33 1.3s 1.11s 14 6
object-hash 2.0.2 4277 20,002,794 0.33 4.2s 40.7s 15 2
Object-is 1.0.1 56 25,466,395 0.53 1.6s N/A 6 0
papaparse 5.1.1 4710 1,290,026 0.08 8.9s 32.6s 11 11
set-value 3.0.2 83 60,184,464 0.57 1.0s 17.1s 4 6
table 5.4.6 2283 36,535,762 0.38 11.5s 39.3s 7 3
WriteJsonFile 4.2.1 160 6,792,576 0.54 6.8s N/A 12 0
vnopts 1.0.2 2571 166,521 0.22 13s N/A 3 0
xtend 4.0.2 106 64,552,908 0.71 1.9s 78.5s 15 6

Web cezerin 0.33.0 48808 1,871 (g) 0.37 63s 740s 9 49
connect 3.7.0 125 15,621,960 0.20 46s N/A 4 0
derby 0.10.27 5060 1,156 0.12 237s N/A 5 0
Datalize 0.3.4 628 231 0.27 71s 91.2s 69 12
express 4.17.1 1829 55,134,711 0.14 62.0s 14.0s 1 2
Express-form 0.12.6 1569 4,183 0.31 1.3s 2.2s 17 2
express-cart 1.1.16 6904 1,554 (g) 0.14 45s N/A 8 0
ghost 3.39.3 58776 32,719 0.32 71s 88.4s 468 5
mongo-express 0.54.0 2789 6,965 0.30 75s 29s 45 25
nodebb 1.4.0 70549 55 0.14 38s N/A 637 0
total.js 3.3.0 38214 14,267 0.14 340s N/A 6 0

	Introduction
	Background
	Hidden Property Abusing
	Threat Model
	Running Example
	Attack Vectors
	Comparing HPA with related attacks

	Lynx Design and Implementation
	Definitions
	Challenges and Solutions
	Design Overview
	Identifying Hidden Properties
	Discovering Property Carriers
	Pinpointing Hidden Property Candidates
	Pruning the Results

	Generating HPA Exploits
	Generating Exploit Templates
	Exploring Attack Consequences

	Implementation

	Evaluation
	Data Set
	Analysis Results
	Overview
	Phase#1: Identifying Hidden Properties
	Phase#2: Exploring Attack Consequences

	Impact Analysis of Identified HPA Vulnerabilities
	Analysis Coverage and Performance
	Case Studies

	Discussion
	Related Work
	Vulnerabilities of Node.js Ecosystem
	Analysis of JavaScript Code
	Security vulnerabilities of Browser-side JavaScript

	Conclusion
	Appendix
	Countermeasures
	Scope Representation in Lynx
	Complete Result

