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Abstract— Software-Defined Networking (SDN) enables net-
work innovations with a centralized controller controlling the
whole network through the control channel. Because the control
channel delivers all network control traffic, its security and
reliability are of great importance. For the first time in the
literature, we propose the CrossPath attack that disrupts the SDN
control channel by exploiting the shared links in paths of control
traffic and data traffic. In this attack, crafted data traffic can
implicitly disrupt the forwarding of control traffic in the shared
links. As the data traffic does not enter the control channel, the
attack is stealthy and cannot be easily perceived by the controller.
In order to identify the target paths containing the shared links
to attack, we develop a novel technique called adversarial path
reconnaissance. Our experimental results show its feasibility and
efficiency of identifying the target path. We systematically study
the impacts of the attack on various network applications in
a real SDN testbed. Experiments show the attack significantly
degrades the performance of existing network applications and
causes serious network anomalies, e.g., routing blackhole, flow
table resetting, and even network-wide DoS. To defeat the
CrossPath attack, we design a lightweight defense system named
CrossGuard. Experiments demonstrate that it can effectively
protect the control channel and quickly locate the attack flow
with 98% accuracy while introducing a small overhead.

Index Terms— SDN, shared link, control channel attack,
defense system.

I. INTRODUCTION

SOFTWARE-DEFINED NETWORKING (SDN) becomes
increasingly popular and is being widely deployed in data
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centers [2], cloud networks [3], and wide area networks [4].
In SDN, the control plane and data plane are decoupled.
A logically centralized controller communicates with SDN
switches to exchange control messages, e.g., routing decisions,
via the control channel built upon a southbound protocol, e.g.,
OpenFlow [5]. SDN enables diversified packet processing and
drives network innovation. A large number of network services
and applications [6]–[12] benefit from it.

Unfortunately, the SDN control channel between the control
plane and data plane is not well protected and can be exploited
though the confidentiality and integrity of the communication
over the channel are protected by the TLS/SSL protocol.
We find that the control channel is under the risk of the Denial-
of-Service (DoS) attack. A small portion of traffic may tear
down the communication over the control channel. Existing
studies focus on many security aspects of SDN, including
malicious or buggy applications [13], [14], attacks on crashing
controllers [15]–[17], attacks on disrupting switches [18], [19],
and information leakage in SDN [20]–[23], but the security of
the SDN control channel is still an open problem.

In this paper, we propose a novel attack named Cross-
Path Attack, which disrupts the SDN control channel by
exploiting the shared links between paths of control traffic
and data traffic. Our attack is stealthy and cannot be easily
perceived by the controller since it does not directly send
a large volume of control traffic to the controller. Instead,
it generates well-crafted data traffic in the shared links to
implicitly interfere with the delivery of the control traffic
while the data traffic does not reach the controller. Thereby,
real-time control messages delivered between the SDN con-
troller and the switches are significantly delayed or dropped.
In particular, since the controller performs centralized control
over all network switches via the control channel, an attacker
can easily break down all network functionalities enabled
by various SDN applications running on the controller. The
root cause of the vulnerability is the side effect incurred by
shared links between paths of control traffic and data traffic
in SDN. Such link sharing is a common practice in SDN with
in-band control [17], [24], which can greatly reduce the cost
of building a dedicated control network and simplify network
maintenance, especially for large networks. However, it also
opens the door for an attacker to disrupt the control channel
by sending malicious data traffic to the shared links.

It is challenging to construct the attack in real networks.
Unlike traditional networks where almost all links deliver both
control traffic (e.g., OSPF or BGP updates [25], [26]) and
data traffic at the same time, only a few number of links
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forward control traffic in SDN. For instance, an SDN network
with m switches can have O(m2) links. However, there may
be m links forming a spanning tree connecting m switches
with a controller to deliver the control traffic. Thus, an attacker
must find a target path containing the shared links between
control and data traffic to send the attack traffic. However,
it is difficult since the network topology and the routing
information are invisible to end users. Moreover, none of
the information can be inferred by scanning tools used in
traditional networks due to different forwarding actions in
SDN. For example, Traceroute [27] cannot work since SDN
switches usually do not decrease the time-to-live (TTL) values
in packet headers.

To address the above challenge, we present a probing
technique called adversarial path reconnaissance to find a
target path that contains the shared links. The key insight
is that the delays of control messages on the SDN control
channel will become higher if a short-term burst of data traffic
passes through the shared links. Hence, the delays can indicate
whether the path of the current data traffic has shared links
with control traffic. Meanwhile, such delays can be estimated
by a host with timing packets. By crafting timing packets
to explore the latency variation of the control messages
with/without injecting a short-term burst of data traffic,
a path containing the shared links can be correctly identified.
Therefore, a target path can be finally found by repeating the
above reconnaissances on each possible path. We conduct
experiments with 261 real network topologies [28] and
demonstrate that a target path can be easily found in practice.
Moreover, experiments show our reconnaissance can achieve
more than 90% accuracy in a real SDN testbed.

In order to ensure the stealthiness of the attack, we leverage
the low-rate TCP-targeted DoS [29] to generate data traffic
consisting of periodic pulses in the shared links, instead of
directly flooding shared links to disrupt the network. The
low-rate TCP targeted DoS incurs repeated TCP retransmis-
sion timeouts for TCP connections of the control channel.
Compared with direct link flooding on the shared links,
it significantly reduces the volume of attack traffic. Moreover,
our attack is significantly different from the packet-in flooding
attacks [15], [30] that trigger a huge volume of control traffic
with bogus packets to saturate the SDN control channel.
Instead, the CrossPath attack leverages low-rate data traffic
to disrupt the control channel and can thus succeed even
in the presence of state-of-the-art SDN defenses, such as
FloodGuard [15], FloodDefender [31], and SPHINX [32].

We systematically study the impacts of the attack on
different SDN applications that achieve diversified network
functionalities. We find that almost all SDN applications can
be affected by our attack since our attack disrupts the core
services in SDN controllers that support these applications.
In order to understand the impacts, we conduct experiments
with three typical applications that have been widely deployed
in SDN controllers, i.e., Learning Switch [33], Reactive
Routing [34], and Load Balancer [35]. The results show:
(1) Learning Switch cannot successfully install forwarding
decisions in the data plane and thus the throughput of the
data plane is reduced to 0 Mbps; (2) Reactive Routing cannot

update routing information in time and obtains incorrect
topology information, which incurs various routing anomalies,
e.g., routing blackhole, routing path eviction, and flow table
resetting; and (3) Load Balancer generates wrong decisions,
resulting in link overloading.

As the CrossPath attack directly disrupts the SDN control
channel, defeating it is challenging. Existing SDN defense
systems [15], [31], [32] typically rely on the control messages
that are successfully delivered between the controller and
switches. However, the CrossPath attack directly congests the
control channel before the controller is able to take actions for
mitigating the attack in time. Hence, a countermeasure easily
fails to work since control messages cannot be successfully
delivered. Besides, it is difficult to locate the attack flow from
all flows with limited bandwidth. The bandwidth of the control
channel between the controller and an SDN switch is limited,
which is typically less than 10 Mbps [15], [30], [31]. Locating
the attack flow from a large number of flows by querying their
flow statistics may consume huge bandwidth and exceed the
capability of the control channel. Particularly, the bandwidth
consumption increases linearly with the number of flows.

To solve the above challenges, we provide CrossGuard,
which is an effective and lightweight defense system against
the attack. CrossGuard consists of two modules: protection
rule activator and malicious flow locator. Protection rule
activator proactively installs protection rules into switches.
Once the control channel is congested, protection rules will be
automatically activated using timeout mechanisms to ensure
enough bandwidth for delivering control messages. Thus,
CrossGuard can enable malicious flow locator to take further
actions for the attack. Considering the limited bandwidth of
the control channel, the locator leverages a bandwidth-saving
malicious flow location algorithm to iteratively locate the
attack flow instead of querying all flows. We prototype and
evaluate CrossGuard in a real SDN testbed. Experiments
demonstrate that it can effectively protect the SDN control
channel. Moreover, CrossGuard can quickly locate the attack
flow with 98% accuracy in about 2 seconds while consuming
less than 0.5 Mbps of the control channel bandwidth.

In summary, our paper makes the following contributions:
• We present the CrossPath attack to significantly disrupt

the SDN control channel by exploiting the shared links
between paths of control traffic and data traffic.

• We develop a probing technique called adversarial path
reconnaissance that can find a target path containing the
shared links with a high accuracy.

• We perform a systematical study and conduct extensive
experiments on typical SDN applications to demonstrate
the impacts of the attack on various SDN functionalities.

• We propose an effective and lightweight defense system
named CrossGuard to protect the control channel and
defeat the CrossPath attack.

• We prototype CrossGuard and evaluate its accuracy,
effectiveness, and overhead in a real SDN testbed.

II. BACKGROUND

Software-Defined Networking (SDN). SDN enables network
innovations by decoupling the control and data planes and
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provide programmability as well as flexibility. The SDN
architecture can be divided into three layers. The control layer
and the application layer constitute the control plane, which
runs as a network operating system, a.k.a. a controller. Various
network applications can be deployed in the application layer
to enable diversified network functions, such as routing, anom-
aly detection, and load balancing. The data plane layer, which
consists of “dumb” SDN switches, performs low-level packet
processing and forwarding based on the decisions generated
by the control layer.
OpenFlow. The dominant communication protocol between
the control and data planes is OpenFlow [5], which has been
standardized by the Open Networking Foundation (ONF) [36].
OpenFlow allows a controller to specify SDN switches’ for-
warding behaviors by installing flow rules. Each flow rule
contains match fields to match against incoming packets, a set
of instructions that describe how to process the matched
packets, and counters that count the number and the total bytes
of matched packets. Moreover, to reduce the cost of building a
dedicated control network and operating networks, OpenFlow
allows the control and data traffic to share some links in the
network, which is called in-band control [17], [24].

Note that flow rules can be installed in two ways [15], [31],
i.e., reactively and proactively. For the reactive approach, flow
rules are dynamically installed when flows arrive at SDN
switches. The first packet of each flow triggers a packet_in
message to controllers. Then, the switches receive the corre-
sponding flow_mod messages to install rules matching and
processing the packets. Thus, the network could provide
flexible control of each flow. However, frequent flow rule
queries consume much bandwidth of control channels and
huge computing resources of SDN switches and controllers.
Besides, as packets can only be forwarded after the rule has
been enforced by the flow_mod messages, the connection
delay of flows are increased. For the proactive approach, flow
rules are preinstalled before all flows arrive at SDN switches.
Thus, flows are forwarded without querying controllers. This
approach saves control bandwidth and computing resources.
It also leads to a small connection delay for each flow. How-
ever, it sacrifices the flexibility of controlling each flow since
the controller cannot know the arrival of each flow in time.
Consequently, the controller cannot dynamically adjust the
forward path of each flow in a fine-grained manner according
to real-time network environments.
Low-rate TCP-targeted DoS. It consists of the periodic on-
off “square-wave” traffic and congests the TCP flows with
a high burst rate. During the burst, the queues of victim
switches are filled with LDoS packets, which results in the
high packet loss of TCP flows. Therefore, periodic bursts of
LDoS will force TCP flows into TCP retransmission timeouts
for a long time and the throughput of affected TCP flows can
be significantly reduced. Moreover, the average rate of the
LDoS attack is not as high as the burst rate, which makes it
more stealthy compared to the brute-force DoS attacks.

III. THE CROSSPATH ATTACK

In this section, we present the CrossPath attack on disrupting
the SDN control channel.

Fig. 1. An example of disrupting the SDN control channel.

A. Threat Model

We consider an SDN network deployed with the Open-
Flow protocol. The SDN controller manages switches over
an in-band control channel [17], [24]. We do not require
the network applying a reactive approach to install flow
rules. Instead, it can enforce either reactive or proactive rule
installation [15], [31]. We assume that an attacker has or
compromises at least one host attached in the network, which
can be easily achieved, e.g., by renting a virtual machine in an
SDN-based cloud network. The goal of the attacker is to craft
data traffic to disrupt the SDN control channel that delivers
control traffic.

An attacker does not need to have prior knowledge on
the network and any privileges of network operation. The
CrossPath attack does not require the attacker to compromise
the controllers, applications, and switches, or to construct man-
in-the-middle attacks on the control channel to manipulate the
control messages. The control channel can be protected with
TLS/SSL. Furthermore, we assume that controllers, switches,
and applications are well protected. For example, the network
applies strict access control policies to prevent communication
between controllers and attackers.

B. Overview

The CrossPath attack aims to disrupt the SDN control
channel by exploiting the shared links between paths of
control traffic and data traffic. An attacker interferes with
the transmission of control traffic by generating data traffic
passing through the shared links. Thereby, the real-time control
messages delivered in the control channel are delayed or
dropped. As the SDN controller performs centralized control
over all switches via the control channel, the attack can almost
break down all network functionalities enabled by SDN. To
achieve this, an attacker needs to use a host attached in the
network to generate probing traffic so as to identify which path
of data traffic (i.e., a target path) shares links with paths of
control traffic. Then, the attacker can send attack traffic to the
target path to disrupt the control channel. In order to decrease
the attack rate, we utilize LDoS to generate attack traffic.

Now let us use a simple example to illustrate the attack. For
the ease of explanation, we use data path to denote the path
where the data traffic is delivered and control path to denote
the path where the control traffic is delivered. As shown in
Figure 1, the network has five switches {s1, s2, s3, s4, s5}.
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Host h1 and h3 communicate with each other via the data path
h1 → s2 → s3 → s4 → h3, while the control path between
s2 and the controller is s2 → s3 → s5 → c. We can observe
that the link between s2 and s3 is shared by the control and
data path. Assume host h1 compromised by an attacker sends
crafted LDoS traffic to h3. Since the link and corresponding
queues of switch ports are also used by the control paths of
s2 and s1, the control messages delivered between the two
switches and the SDN controller can be significantly delayed
or dropped, resulting in abnormal network behaviors.

In order to successfully launch the attack, an attacker
should correctly choose a target path that contains shared
links. However, it is challenging to find target paths in SDN.
Different from traditional IP networks that almost each link
delivers data and control traffic at the same time, there are
only a few number of links delivering control traffic in SDN.
For instance, given an SDN network with m switches, there
may be m2/2 links. m links may be used to deliver control
traffic so that the connectivity between the controller and all
SDN switches can be ensured. Thus, only a limited number
of data paths include the links shared with control paths.
To identify such data paths, the attacker needs to know the
network topology and routing information. Nevertheless, they
are stored in the SDN controller and are invisible to the
attacker. Moreover, existing scanning tools cannot be used in
SDN to infer the network topology and routing information
since SDN has different forwarding behaviors compared to
traditional IP networks. For example, Traceroute [27] cannot
infer the routing path of the packets, as SDN usually does not
decrease the time-to-live (TTL) values in packet headers.

C. Adversarial Path Reconnaissance

To address the challenges above, we develop a probing
technique called adversarial path reconnaissance to find a
target data path that have links shared with control paths. Our
key observation is that the delay of a control path is higher if
a short-term burst of the data traffic passes through the shared
links. Thus, an attacker can use a host in SDN to identify a
target path by generating data traffic and measuring the delay
variations of the control paths. Specifically, our adversarial
path reconnaissance consists of three phases: estimating the
delays of control paths, identifying a target data path and
improving accuracy with T-test.
Estimating Delays of Control Paths. In SDN, there are
some types of packets that are directly forwarded to controller
no matter whether the network applies reactive or proactive
approaches to install flow rules. They must be processed
by the controller since the controller stores the information
requested by the packets. Specifically, Address Resolution
Protocol (ARP) packets, Dynamic Host Configuration Pro-
tocol (DHCP) packets and Border Gateway Protocol (BGP)
packets are the representatives. For example, Floodlight offers
the ARP Proxy [37] application that directly replies an ARP
response packet containing the destination MAC address for
an ARP request packet. Similarly, the SDN controller directly
replies DHCP response packets for a DHCP request packet
to automatically configure IP addresses of end hosts [38].

Meanwhile, the SDN controller may communicate with other
legacy routers by replying BGP packets [39].

As these packets are forwarded mainly through the control
path, an attacker can craft these packets and time related
response packets to estimate delays of control paths. No
matter whether the network applies reactive or proactive rule
installation, the estimation can still be successfully conducted.
We show an example of how an ARP packet can be used to
estimate the delays of control paths. As is shown in Figure 1,
we assume that a host h1 sends an ARP request packet. When
the packet arrives at the ingress switch s2 through the data path
h1 → s2, it will be forwarded to the controller through the
control path s2 → s3 → s5 → c. Then, an ARP response
packet will be forwarded back to the host h1 through the
reversed control path and the reversed data path. Hence, the
round-trip time (RTT) between the ARP request packet and
the ARP response packet consists of the delay of the data path
and the delay of the control path. As the delay of the data path
is much smaller than the delay of the control path due to its
shorter forwarding path and faster data plane forwarding, the
RTT mainly reflects the delay of the control path. For example,
our experiments on the real SDN testbed show that the total
RTT is about 5 ms and the delay of the one-hop data path is
less than 0.5 ms. Thus, the RTT can approximate the delay of
the control path.
Identifying a Target Data Path. An attacker needs to send
two packet streams for each possible data path in order to
find a target data path crossing with some control paths, i.e.,
a data path containing shared links. The first packet stream
is a timing stream, which aims to estimate the delay of the
control path. The timing stream must contain packets that will
be forwarded to the controller and trigger response packets
back to the end host. Hence, an attacker compromising a host
can calculate the RTT of the packet to estimate the delay of the
control path. As we mentioned before, crafting ARP, DHCP,
and BGP packets can achieve this goal.

The second packet stream is a testing stream. It contains a
short-term burst of packets sent to the destination host in the
current data path. These packets in the stream can be typically
UDP packets. TCP packets can also be chosen if we send
them with raw sockets [40] to eliminate the automatic rate
control in TCP. The testing stream can be used to test whether
the current data path crosses with some control paths or not
in collaboration with the testing stream. An attacker can first
measure the delay δ by the timing stream without transmitting
the testing stream to the destination. Next, an attacker can
measure the delay again (denoted by δ′) with the testing stream
being transmitted at the same time. By comparing these two
delays, an attacker can obtain:

(i) If δ′ is significantly higher than δ, the short-term burst of
packets affects the delays of some control paths. Thus,
the data path currently being explored crosses with some
control paths.

(ii) If δ′ is similar to δ, no available evidence indicates that
the data path crosses with some control paths.

A target path can thus be found by testing each path.
Improving Accuracy with T-test. Although our reconnais-
sance allows an attacker to know whether a data path crosses
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with control paths by sending timing and testing packets,
it may achieve low accuracy in practice. Various network
noises can affect the reconnaissance. For example, a burst of
benign traffic can cause high delays of control paths, which
makes a non-target data path misidentified as a target data path.
We find that t-test [41] can be a straightforward approach to
eliminate the influences of network noises as much as possible.
T-test is a statistical method that compares whether two groups
of samples with random noises belong to the same distribution.
It produces a p value to denote the likelihood of the two groups
of samples from the same distribution. Typically, if p is less
than a predetermined value, i.e., the significance level α [41],
the two groups are considered significantly different. Thus,
we can collect two groups of delays with or without a testing
stream for a data path, and apply t-test to determine whether a
data path crosses with control paths according to the p value.
Algorithm. Algorithm 1 shows the pseudo-code of the adver-
sarial path reconnaissance, which can be performed by a host
in the target network. The input η is the number of repeated
reconnaissances for each data path and is also the number
of data in each group used in the t-test. The input α is the
significance level used in the t-test. Step 1 gets all hosts in
the network in order to explore the data paths between the
compromised host and them. Here, we can apply traditional
scanning tools such as Nmap [42] to scan all hosts in SDN.
This is because SDN does not change the traditional network
protocols such as ICMP and TCP. Hence, hosts can still be
discovered in SDN by crafting ICMP ECHO Request packets
or TCP SYN packets to a range of IP addresses. The main
loop is from Step 3 to Step 19. In each loop iteration, the
algorithm tests one data path. Step 5 to Step 12 collect 2 · η
delays of a control path that may possibly cross with a data
path. The delays without sending the testing stream is obtained
in Step 6 to Step 7. Step 8 to Step 11 obtain the delays while
transmitting the testing stream. After obtaining all the delays,
the t-test is applied to determine whether a data path crosses
with a control path in Step 13 to Step 17. If the group of delays
with testing stream is dramatically higher than the other group,
the algorithm outputs the destination host indicating that the
current data path is a target path. Otherwise, the algorithm
prepares for the next round of iteration in Step 19.

IV. ATTACK EVALUATION

The section conducts simulations and real experiments to
evaluate the feasibility and effectiveness of the attack.

A. Large-Scale Simulation Experiments

Simulation Setup. We perform simulations with 261 real
network topologies [28] around the world. As these network
topologies do not contain hosts and routing information,
we generate 100 hosts 1 in each topology and apply Dijkstra’s
algorithm [43] to generate the shortest data path between two
hosts. Note that shortest path forwarding is commonly used in
the intra-domain routing system. We add another host in each
network topology as the SDN controller. The controller can

1In reality, we also conduct our experiments with 50, 500, 1000 hosts,
respectively. The results are similar to those in Figure 2.

Algorithm 1 Adversarial Path Reconnaissance
Input: η, α
Output: h;
1: H ← ScanAllHosts()
2: i← 0
3: while i < |H | do
4: δ ← [ ], δ′ ← [ ]
5: for j = 0→ η − 1 do
6: RTT ← sendTimingStreamTo(H [k])
7: δ.append(RTT )
8: startSendTestingStreamTo(H [k])
9: RTT ′← sendTimingStreamTo(H [k])

10: stopSendTestingStreamTo(H [k])
11: δ′.append(RTT ′)
12: end for
13: if tT est(δ, δ′) < α and sum(δ) < sum(δ′) then
14: /* The data path from the compromised host to H [k]

crosses with control paths. */
15: output(H [k])
16: exit()
17: end if
18: i← i + 1
19: end while

connect switches via shortest paths (SP) to minimize delays,
a minimum spanning tree (MST) to minimize costs, or ran-
domly searching available paths (RS). We conduct experiments
with different types of connections in turn. Moreover, for
simplicity and without loss of generality, we assume that the
attacker only controls one host in the network and we attach
such a host to each network topology. As the positions of hosts
in a network will affect our experimental results, we conduct
1,000 experiments for each network topology and randomly
change the positions of all hosts in each experiment. We show
the average results over 1,000 experiments for each topology.
Average Percentage of Identified Target Paths. Figure 2a
shows the CCDF of the average percentage of identified target
paths with 261 various network topologies. From the results,
we can see all the network topologies have at least 5%
identified target paths among total data paths in a network
regardless of types of connections. More than 98% of the
network topologies have at least 30% identified target paths.
Moreover, the network tends to have more identified data paths
when the controller connects switches via MST. The results
demonstrate that our reconnaissance can find target data paths
in various network topologies.
Average Percentage of Affected Switches. As attacking
different target paths will affect the average percentage of
switches in a network topology, we randomly attack a target
path in the 1,000 experiments for a network topology and cal-
culate the average percentage of affected switches. Figure 2b
shows that more than 20% of the switches can be affected
by attacking a target path for 90%, 99% and 99% of the
261 network topologies with SP, MST and RS connections,
respectively. For some network topologies, attacking a target
path can even affect half of the whole switches. Thus, it is
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Fig. 2. Complementary Cumulative Distribution Function (CCDF). (a) shows
the CCDF of the average percentage of identified target paths with 261 real
topologies; (b) shows the CCDF of the average percentage of affected switches
by attacking a target path with 261 real topologies.

possible for an attacker to attack multiple target paths to cause
damages for the whole switches and incur network-wide DoS.

B. Experiments in a Real SDN Testbed

Experiment Setup. Our testbed contains a popular SDN
controller Floodlight [44], five hardware SDN switches
(AS4610-54T [45]), and three physical hosts. The controller
is deployed on a server with a quad-core Intel Xeon CPU
E5504 and 32GB RAM. Each physical host has a quad-core
Intel i3 CPU and 4GB RAM. The network topologies, control
paths and data paths are illustrated in Figure 1. An attacker
first compromises host h1 to conduct Algorithm 1 for the data
paths of the other hosts. The burst rate of short-term testing
packets is 1 Gbps, which is the maximal rate the host can
send.

The attacker then generates LDoS data traffic to disrupt the
control channels of switches s1 and s2 by attacking the data
path between h1 and h3. Basically, there are three parameters
for the LDoS flows: burst length, inter-burst period, and peak
magnitude. The previous study [46] has conducted compre-
hensive experiments on how different parameters determine
the attack impacts of LDoS flows and how to choose these
parameters. As our paper mainly focuses on studying the
impacts for the SDN functionalities after the control channel
is attacked by the data traffic, we apply fixed parameters
in our attack. We choose the burst length as 100 ms, inter-
burst period as 200 ms, and peak magnitude as the maximal
speed 1 Gbps that the host can send for our all experiments in
the paper. These parameters show how an attacker can affect
the SDN functionalities to the maximum extent by generating
data traffic to disrupt the control channel. Moreover, compared
to simply flooding the target paths, which needs to send traffic
with 1 Gbps all the time, the rate of our LDoS flow is only
about 0.33 Gbps on average.
Accuracy of Reconnaissances. We first collect the delay
variations on delivering control messages. The delay variation
is defined as the absolute difference between the delays of
control messages measured with and without testing stream.
We collect 5,000 records both for two data paths in the
network. Figure 3 shows the distribution of the probability
of the delay variation. The results demonstrate that the target
data path has a significantly different probability distribu-
tion compared with the non-target data path. In particular,
most delay variations with the non-target data path are less

Fig. 3. Probability distribution of delay variations.

Fig. 4. Accuracy of the reconnaissance algorithm.

Fig. 5. Throughput of control packets.

than 2 ms, while most delay variations are much larger for the
target data path. These results illustrate that the discrimination
between target data paths and non-target data paths can be
easily identified according to the delay variations.

We then calculate the accuracy of our reconnaissance by
conducting 1,000 repeated experiments with different settings
of η and α. Here, η denotes the number of measured delays for
each data path, which is also the size of each group in the t-test
used to identify a target path. α is the significance level used
in the t-test. As shown in Figure 4, the accuracy increases
with the increase of η. Moreover, we can observe that the
accuracy increases with the increase of α when η is smaller,
e.g., 10 or 20. However, the accuracy tends to be stable when
η becomes large. The reason is that two different groups will
statistically different from each other and two similar groups
will be statistically closer to each other with more data. It is
easier to distinguish the two types of paths if we have enough
data, which is not significantly impacted by the setting of α.
The accuracy always reaches more than 90% with different
settings of α when η is 40 or 50.
Effectiveness of the Attack. To evaluate the impact of the
attack on the control packets, we configure the controller to
generate 1,000 control packets per second 2 to the switch s2.
Figure 5 shows the throughput of control packets. The through-
put can achieve 1,000 packets per second. However, it almost

2There can be thousands of control packets per second [47]. For simplicity
but without loss of generality, we choose a practical value, i.e., 1,000.
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Fig. 6. Delay of control packets.

drops to 0 under the attack though there are short-term peaks
of throughput. The reason is that our attack triggers TCP of
control flows to periodically enter the phase of retransmission
timeouts. In this case, no packets will be sent within the
retransmission timeouts. Figure 6 shows the delay of control
packets. The median value of delays for control packets under
the attack is 687 ms, which is more than about 100 times
higher than that in absence of the attack. Moreover, the delays
under the attack vary within a large range from below 10 ms
and to more than 10,000 ms. However, most delays without
the attack are less than 10 ms. The results above demonstrate
our attack can significantly degrade the throughput of control
packets and incur high delays.

V. ATTACK IMPACTS ON NETWORK FUNCTIONALITIES

In this section, we perform a systematical study on the
attack impact on various network functionalities.

A. Core Services of SDN

SDN controllers can be abstracted as a two-layer architec-
ture though different controllers have different implementa-
tions. Applications can be deployed in the top layer to enable
different network functionalities, while the low layer provides
different core services that interact with switches and provide
basic functionalities for the top-tier applications. There are
four major core services:
Packet Service. The service manages packets exchanged
between the control and data planes. It paraphrases packet_in
messages containing data packets received from switches and
dispatches them to applications. Meanwhile, it sends data
packets back to switches via packet_out messages.
Flow Rule Service. The service manages flow rules. It installs
or updates rules in switches via flow_mod messages accord-
ing to the results computed by applications.
Topology Service. The service maintains the topology of end
hosts, links, and switches. It discoveries new hosts and tracks
their locations via packet_in messages embedded with an
ARP or DHCP payload. It periodically sends and receives
LLDP packets encapsulated in packet_in or packet_out mes-
sages to maintain link information. Besides, it establishes the
control channel between switches and controllers via several
handshake messages. The liveness of switches is periodically
checked via echo_request and echo_reply messages.
Flow Metrics Service. The subsystem is responsible for
collecting flow statistics. It periodically queries the flows on
network devices via stats_request and stats_reply mes-
sages, and then provides various statistics to applications.

Fig. 7. Attack impacts on learning switch.

We note that almost all applications enabling network func-
tionalities in SDN is built on at least one of the four services.
Our attack thus can affect various SDN functionalities by
disrupting the transmission of control messages exchanged
between these core services and switches. We will choose
three typical applications that are widely deployed in SDN
controllers to show the impacts of the attack on various
network functionalities. The implementations of the three
applications [33]–[35] are from Floodlight [44].

B. Learning Switch

The learning switch application [33] allows SDN switches
act as normal switches in legacy networks. The application
examines a packet matching no rules in a switch and looks
up the recorded mapping between the source MAC address
and the port. If the destination MAC address has already been
associated with a port, the packet will be sent to the port
and corresponding rules will be installed to match subsequent
packets. Otherwise, the packet will be flooded on all ports. The
application relies on two services. The packet service sends the
packet to the controller via packet_in messages and back to
the switch via packet_out messages, and the flow rule service
installs rules in the switch via flow_mod messages.

Our attack can effectively block installation of forward-
ing decisions generated by the application by disturbing the
messages exchanged between the core services and switches.
Figure 7 shows the impacts of the attack on the functionalities
of learning switch. Here, we define the success ratio of rule
installation as the number of successfully installed rules over
the number of rule requests within a second. As shown in
Figure 7a, the success ratio of rule installation in a switch
always maintains over 90% with various numbers of new flows
without our attack. However, it drops significantly in presence
of our attack. When the rate of new flows reaches 250 flows/s,
the success ratio reduces to below 20%. Thus, learning switch
cannot work correctly. As shown in Figure 7b, the throughput
of a switch is 0 Mbps for a long time under attack when there
are 250 flows/s.

C. Reactive Routing

The reactive routing [34] application enables flexible and
fine-grained routing decisions for different flows. When a new
flow matching no rules is generated, the first packet of the
flow will be sent to the reactive routing application. The
application analyzes the packet and calculates routing paths
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Fig. 8. The network topology used in reactive routing.

for the new flow. Besides depending on the packet service
processing data packets and flow rule service installing rules,
the application also queries the topology service that provides
the information of the locations of hosts, the state of switches
and links.

In order to demonstrate the effectiveness of our attack, we
build a network topology with four hosts and three switches,
as shown in Figure 8. The IP addresses of the four hosts h1,
h2, h3 and h4 are 10.0.0.1, 10.0.0.2, 10.0.0.3, and 10.0.0.4,
respectively. The hosts h1 and h2 send packets to the host h3.
The default routing path of packets from h1 to h3 is <
lh1→s1 , ls1→s2 , ls2→s3 , ls3→h3 >. The default routing path of
packets from h2 to h3 is < lh2→s2 , ls2→s3 , ls3→h3 >. Also,
a flow with TCP port 1111 from h2 to h3 has a different path
due to a QoS requirement. The compromised host h4 sends
attack traffic to h3 and hence exploits the control path of
switch s2.

As shown in Figure 9a, our attack incurs long-term rout-
ing rule inconsistency, which makes the link utilization
reach 100%. The reason is that SDN exists transient rule
inconsistency [48] which can be leveraged by our attack. In the
network shown in Figure 8, packets with an IP destination
address 10.0.0.3 and a destination port 1111 loop between
s1 and s2 when the application deletes rule “10.0.0.3 : 1111,
to s′′3 while rule “10.0.0.3 : 1111, to s′′1 remains. The rule
inconsistency normally lasts for a very short period before
all the commands of deleting corresponding rules of the flow
are issued. However, our attack can delay the commands
exchanged between the flow rule service and s2 for tens of
seconds. Thus, the packets loop between s1 and s2 for a
long period and the link utilization between the two switches
increases with more packets injected.

Figure 9b shows the long-term routing blackhole when h3 is
migrated from s3 to s2. The migration is finished within
five seconds without the attack, as the topology service can
track the new location via packet_in messages containing the
DHCP payload when the host moves to s2. However, the mes-
sages are significantly delayed under our attack, and thereby
the routing between other hosts and h3 cannot be updated
in time, causing more than 10 seconds routing blackhole.
Moreover, by blocking LLDP packets between the topology
service and switches, our attack can deactivate links in the
topology database and thus the corresponding routing paths
will be removed. In the Floodlight controller, a link will
be deactivated if no LLDP packets pass through the links
within 35s. Figure 9c shows the original routing path from

Fig. 9. Attack impacts on reactive routing.

h2 to h3 is removed since our attack deactivates the link
from s2 to s3. Moreover, our attack can reset the connections
between switches and the controller by delaying control mes-
sages. Figure 9d shows the connection of switch s2 is reset
and all the flow tables are cleaned.

D. Load Balancer

Load balancing has been widely used to improve resource
usage and throughput as well as reduce response delays, which
balances the workload among multiple nodes. SDN controllers
deploy the load balancer [35] application to achieve the
goal. The application in the Floodlight controller can balance
requests of clients in two ways, i.e., round robin and statistics-
based scheduling. Round robin scheduling randomly chooses a
server from a server pool to serve a new request. The statistics-
based scheduling chooses a server with the lowest utilization
to serve a new request, where the utilization is calculated
according to the real-time statistics of the switch ports. It relies
on the flow metrics service to collect the statistics.

We configure the application to enable statistics-based
scheduling, as it can provide better load balancing under
different flow distribution of clients. In our experiments, two
hosts consist of a server pool and another two hosts send
flows to the servers. Figure 10a shows the utilization of
switch ports connecting the two servers over time without
our attack. Initially, two different elephant flows are sent to
the servers, which causes the port utilization to increase to
40% and 10%, respectively. At the 7th second, the rate of the
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Fig. 10. Attack impacts on load balancer for misallocating the workloads
across servers.

two flows exchanges. The utilization of one server reduces
from 40% to 10% while another server increases from 10% to
40%. At the 14th second, a new elephant flow starts, and the
application directs the flow to server #1 that has the lowest
port utilization. The port utilization of server #1 reaches 70%.
Unfortunately, the application will mistakenly direct the flow
to server #2 under our attack. As shown in Figure 10b, the
port utilization of server #2 reaches 100%. The reason is
that our attack can significantly delay the stats_request and
stats_reply messages exchanged between the flow metric
service and switches, and thus the application cannot know
the port utilization in time. Actually, it considers that the port
utilization of server #2 is still 10% when the new flow comes.

VI. CROSSGUARD

In this section, we provide an effective and lightweight
defense system named CrossGuard to defeat the attack and
demonstrate its effectiveness with real experiment results.

A. System Architecture

Figure 11 shows the architecture of CrossGuard. Cross-
Guard introduces two modules to defend against the attack:
protection rule activator and malicious flow locator. Protection
rule activator installs specific protection rules into switches
to protect control channels. Once the control channel is con-
gested, protection rules will be automatically activated using
timeout mechanisms to ensure enough bandwidth for deliver-
ing control flows. Meanwhile, as the attack still occupies the
valuable bandwidth and may congest data flows, malicious
flow locator locates the attack flow from all flows based
on flow statistics. Considering the limited bandwidth of the
control channel, it leverages a bandwidth-saving malicious
flow location algorithm to iteratively locate the attack flow
rather than queries all flow statistics. We will detail the two
modules of CrossGuard in the following sections.

B. Protection Rule Activator

As the control messages from the controller to switches may
be interrupted by the attack, the protection rule activator mod-
ule installs protection rules into switches in advance to ensure
enough bandwidth for delivering control messages. Specifi-
cally, protection rule activator installs three crafted rules in the
protection table. The first rule matches the control flow and
persistently exists. The second rule matches data flows with a

Fig. 11. Architecture of CrossGuard.

Fig. 12. An example on our protection rule activator.

high priority and doesn’t limit the rate of data flows. However,
it has a timeout and hence is periodically refreshed by the
controller. By default, all data flows are always forwarded
through this rule. The third rule also matches data flows but
with a low priority and rate limiting. It persistently exists
with no timeout settings. When the attack congests the control
channel, the second rule cannot be periodically refreshed by
the controller. Hence, it disappears due to timeouts. Data
flows are then automatically forwarded by the third rule in
a rate-limiting manner without the controller involved. In this
way, protection rule activator ensures enough bandwidth for
the control channel when attack exists, which enables taking
following measures that depends on control channels, such as
identifying malicious flows.

We take an example to illustrate our mechanism. As shown
in Figure 12, the attack flow and the control flow both goes
through port 1 in s1. The attack flow can quickly congest
the control flow. Before we have enough time to detect the
attack and take mitigation measures, the switch may have
already been disconnected from the controller. Any subsequent
countermeasures relying on control messages between the
switch and the controller cannot work. To prevent this issue,
protection rule activator installs three specific rules for flows
going through port 1 in the protection table. Rule 1 matches the
control flow with high priority. Rule 2 and rule 3 matches all
the flows with medium priority and low priority, respectively.
However, rule 2 is set with a hard_timeout of 1 seconds.
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Hence, we force the controller to periodically issue a flow_mod
message that refreshes rule 2. Moreover, a meter rule is
attached to rule 3, which limits the rate of flows matching
rule 3. By default, all data flows including attack flows are
forwarded through rule 2 without rate limiting. However,
once attack flows remarkably congest and disrupt the control
channel, rule 2 will be automatically removed since rule 2 can-
not periodically receive flow_mod messages from controllers.
Thus, all data flows including attack flows are then forwarded
through rule 3 with rate limiting. Remaining bandwidth can
be totally used by control flows and the malicious flow cannot
congest the control channel.

Note that setting a large hard_timeout for rule 2 may
result in a long downtime. This is because rule 2 cannot be
timely reinstalled to eliminate the effect of the rate limiting
for rule 3, which affects the throughput of normal flows.
On the contrary, setting a small hard_timeout requires more
bandwidth to frequently reinstall rule 2. However, according
to our experiments, even we set the minimal configurable
hard_timeout, i.e., 1s specified by the OpenFlow protocol, the
consumed bandwidth is only several Kbps, which is small.
Hence, we set the hard_timeout for rule 2 as 1s to reduce the
downtime as much as possible.

It is possible that the allocated bandwidth may be too
much or too little for control flows at different time.
Hence, we may waste valuable bandwidth or affect control
flow throughput which network functionalities depends on.
In order to meet the requirement of control flows, protec-
tion rule activator predicts control flow throughput through
machine learning and dynamically adjusts the bandwidth
according to the prediction. Specifically, we predict the
control flow bandwidth with the random forest regression
model [49], which is one of the most effective machine
learning models for regression and is lightweight. We extract
the following features from control flows to train our
model:

• The sequence of historical throughput of control flows ηn.
It directly reflects the possible trend of throughput.
We periodically collect the throughput according to the
counters of protection rules every interval Tp.

• The sequence of latency increase of control flows
ΔRTTn. If the remaining bandwidth is insufficient for
control flows, ΔRTTn will increase. We periodically
collect the latency increase by measuring the time dif-
ference between a pair of echo_reply and echo_request
messages every interval Tp.

• The sequence of the packet_in increase ΔPn. The bigger
ΔPn is, the more bandwidth is possibly needed in the
future. We periodically collect the number of packet_in
messages by counting the number of received messages
in the controller every interval Tp.

• The sequence of the congestion window of the TCP
connection of control flows cwndn. We periodically fetch
the congestion window from the network stack of the
SDN controller every interval Tp.

Each feature sequence has the same length of n. Note that n
and Tp are parameters. We will choose the best values of them
according to our experiments in Section VI-D.

C. Malicious Flow Locator

The protection rule activator module protects control flows
from being congested. However, an attack can still con-
sume the bandwidth of links and congest data flows. Thus,
we develop a malicious flow locator module for CrossGuard,
which identifies and throttles the attack flows based on the
statistics of the flows. The malicious flow locator module is
activated by the protection rule activator module and analyzes
data flows sharing the control path. However, it is challenging
to identify the malicious flow from all data flows considering
the limited bandwidth of the control channel between the con-
troller and a switch. Assuming that a lot of flows pass a switch
and one of them is the malicious flow. The corresponding
forwarding rules hence are installed into the switch to forward
the flows. If we attempt to check whether a flow is malicious
based on flow statistics, we need to frequently query the
counters of all the flow rules. However, as the bandwidth of the
control channel is typically less than 10 Mbps [31], we cannot
afford to query all flow statistics. Particularly, frequently
querying all flow rules may incur the congestion of the control
flow.

To solve the problem, we exploit the idea of divide and
conquer to iteratively locate the attack flow with limited
bandwidth. At the beginning, we treat all the data flows as
a set, split it into several subsets, and generate a location
rule to match each subset. As the number of location rules
is much less than that of forwarding rules, it consumes a
little bandwidth of the control channel to collect statistics
from location rules. Meanwhile, it finds out the subset that
is most likely to contain the malicious flow, which is then
treated as a new set. We change the match fields of location
rules to divide the new set into several subsets. We repeat the
above process until a subset contains only the malicious flow.
Here, we select the subset with the maximum D-value [50] as
the subset most likely containing the malicious flow in each
location round. The previous study [50] has shown the metric
can well character the singularity and bursty of network traffic
under LDoS attacks, and the D-value of the subset containing
the malicious flow is the highest.

Figure 13 shows an example of locating malicious flows.
For simplicity, we assume that there are 256 flows passing
a switch and their source IP addresses belong to the sub-
net 10.0.0.0/24. One of them is malicious and its source
IP is 10.0.0.193. Consider we apply four rules to con-
duct malicious flow location. In the first round, we split
the flows into four subnets, i.e., 10.0.0.0/26, 10.0.0.64/26,
10.0.0.128/26, and 10.0.0.192/26. The four location rules
are used to collect the aggregated statistics of each subset.
Next, our method finds that the malicious flow belongs to
the subnet 10.0.0.192/26. In the second round, the location
rules are changed to match four subnets of 10.0.0.192/26.
Our method confirms that the subnet 10.0.0.192/28 contains
the malicious flow. In the third round, location rules are
changed again to detect the four subnets of 10.0.0.192/28
and show that the subnet containing the malicious flow is
10.0.0.192/30. Finally, the source IP of the malicious flow is
confirmed to be 10.0.0.193 from 10.0.0.192/30 in the fourth
round.
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Algorithm 2 Bandwidth-Saving Malicious Flow Location
Input: S, m, l, Tl

Output: M ;
1: while |S| > 1 do
2: SS ← split(S, m)
3: for i = 1→ l do
4: for j = 1→ m do
5: d← CalAggBandwidth(SS[j])
6: υ[j].add(d)
7: end for
8: sleep(Tl)
9: end for

10: D ← 0
11: index← 0
12: for i = 1→ m do
13: if D > CalDval(υ[i]) then
14: index← i
15: D ← CalDval(υ[i])
16: end if
17: end for
18: S ← SS[index]
19: end while
20: output(S)

Algorithm 2 shows the pseudo-code of our bandwidth-
saving malicious flow location. The input S is the set of
flows to be detected, m is the number of location rules,
l is the sequence length of flow statistics, and Tl is the query
interval. The main loop is from Step 1 to Step 19. In each
loop iteration, the algorithm splits the set of flows into several
subsets and finds out which subset contains the malicious flow
through D-value. Step 2 split S into m subsets of flows.
Step 3 to step 9 collect the sequences of aggregated flow
statistics of each subset for l times with a interval Tl. Step
10 to step 17 calculate the D-value of each subset and exploit
index to record the subset having the maximum D-value. Step
18 assigns SS[index] to S for the next loop iteration. The
algorithm stops when the S only contains the malicious flow.
Though the algorithm focuses on mitigating one malicious
flow, it can also mitigate multiple concurrent malicious flows
with minor modification. Specifically, as the attack flows have
much higher D-values than benign flows [50], we can add a
threshold α to locate multiple malicious flows, i.e., flows with
D-values higher than the threshold are classified as malicious
flows. Hence, when choosing the subset in step 10 to step 17,
we can record multiple subsets with D-values higher than
the threshold α to locate multiple concurrent malicious
flows.

D. Evaluation

Experiment Setup. The topology of our experiments is shown
in Figure 1. We inject the CAIDA traffic [51] into our network
as background traffic. We randomly choose flows from the
traffic and ensure that the number of rules generated by flows
does not exceed the table capacity. We launch the CrossPath
attack using the same configurations in Section IV-B.

Fig. 13. An example of locating malicious flows. It iteratively locates the
attack flow through divide and conquer to save the valuable bandwidth of the
control channel.

Fig. 14. Effectiveness on protecting control traffic.

Effectiveness on Protecting Control Flows. Figure 14a
shows the throughput of control packets with and without
the defense. As we can see, the attack causes the throughput
of control flows into 0 for a long time without CrossGuard.
However, CrossGuard can effectively maintain high through-
put of control flows even with the attack. Figure 14b shows
the delay of control packets with and without our defense.
The delays of more than 99% control packets are less than
10 ms with CrossGuard under the attack. However, the delays
of almost 70% control packets are more than 100 ms under
the attack without CrossGuard. These results demonstrate that
CrossGuard can effectively protect control flows.
Accuracy on Malicious Flows Location. As the granularity
of the aggregated flow statistics can affect the accuracy of
malicious flow location, we conduct experiments with different
flow query interval Tl ranging from 50 ms to 200 ms and
different number of location rules m ranging from 4 to 32.
As Figure 15 shows, the recall rate and accuracy decrease
when Tl increases. As the controller will obtain less infor-
mation about the flows with larger Tl, it is more difficult to
find out the malicious flow. Meanwhile, the benign flows are
easier to be misclassified. Besides, the recall rate and accuracy
increase when the number of location rules m increases.
It is because a location rule will match less flows when m
increases. The aggregated flow statistics of each rule is more
fine-grained, which is more accurate for our method to infer
the subset containing the malicious flow.

We also conduct experiments to evaluate the accuracy on
locating multiple concurrent malicious flows with different
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Fig. 15. Accuracy of malicious flow location.

Fig. 16. Accuracy of locating multiple malicious flows.

threshold α. As shown in Figure 16, the recall rate and
false positive rate decrease when α increases. More malicious
flows escape from our detection and less benign flows are
misidentified with the increase of α. Meanwhile, the recall rate
and false positive rate increase when the number of location
rule m increases. This is because the aggregated flow statistics
of each rule can be more fine-grained with more location rules.
Consequently, it will be more accurate to infer the subsets
containing malicious flows. We can see that more than 90%
recall rate and less than 4% false positive rate can be achieved
when α = 0.5 and m = 4.
Precision of Bandwidth Prediction. To collect data for
training the random forest regression model that predicts band-
width, we collect 5,000 sequences of features with different
collection interval Tp and sequence length n. We calculate
Mean Squared Error (MSE) to evaluate the precision of
bandwidth prediction and thus choose the best parameters.
Our experiments show that n = 30 and Tp = 0.5s achieve the
minimal MSE for our model. Hence, we set the two values
in our model and show the detailed bandwidth estimation in
Figure 17. As we can see, our method achieves good results
on predicting the bandwidth of control flows.
Malicious Flow Location Time. Figure 18 shows the location
time on locating the malicious flow with different number
of location rules and flows. Here, we ensure that a specific
number of flows (i.e., 500, 1,000, 2,000) pass a switch and
one of them is malicious in our experiments. As we can see,
it costs less location time to locate the malicious flow when
the number of location rules increases or the number of flows
decreases. The location time is less than 3s with 12 location
rules even though there are 2,000 flows in switches.
System Overhead. To evaluate the overhead of CrossGuard,
we evaluate its bandwidth consumption and CPU utilization
with different flow query intervals Tl ranging from 0.05s
to 0.2s, and different location rules ranging from 2 to 32.

Fig. 17. Predicted and real bandwidth of control flows.

Fig. 18. Location time with different location rules.

Fig. 19. CrossGuard overhead.

As shown in Figure 19a, the bandwidth consumption increases
with the decrease of the query interval and the increase of
location rules. However, the bandwidth consumption is limited.
For example, it achieves less than 0.5 Mbps even with 0.05s
query interval and 32 location rules. Figure 19b shows the
CPU utilization of the controller. A low Tl and a high number
of location rules can increase the CPU utilization for the
controller. If Tl is set to 0.1s, the CrossGuard introduces
an additional CPU usage of 3%. The results show that
CrossGuard introduces small overhead to defeat the CrossPath
attack.

VII. RELATED WORK

Reconnaissances in SDN. SDN reconnaissances has been
extensively studied. Shin and Gu [52] designed an SDN
scanner to determine whether a network is SDN by measuring
response delays of pings. Cui et al. [20] further conducted
experiments in real SDN testbed to demonstrate its feasibil-
ity. Klöti et al. [53] presented a reconnaissance technique to
determine if an SDN has rules for aggregated TCP flows by
timing the TCP setup time. Achleitner et al. [22] designed
SDNMap to reconstruct composition of flow rules by ana-
lyzing probing packets with specific protocols. Liu et al. [23]
developed a Markov model to reveal rule distribution among
switches. Sonchack et al. [21] presented a sophisticated infer-
ence attack to learn host communication patterns and ACL
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entries even if injected packets do not trigger replies. However,
none of the methods can find target paths containing shared
links with control paths.
Attacks on SDN and Related Defenses. SE-Floodlight [14]
and SDNShield [13] are developed to provide permission
control for malicious SDN applications. Some studies focus
on the security of controllers, including network poison-
ing [54], identifier binding attacks [55], subverting SDN con-
trollers [16], and exploiting harmful race conditions in SDN
controllers [17]. Other studies focus on data plane security,
including low-rate flow table overflow attacks [18], SDN
teleportation, and detection on abnormal data plane [19]. Our
paper focuses on the security of control channel, which is
orthogonal to the existing work. We uncover a new type of
attack, which has not been discovered by existing automatic
attack discovery tools [56]–[58] in SDN.

The packet_in flooding attack [15], [30] is mostly closest to
ours. It saturates the control channel with a large amount of
packet_in messages. To trigger the control messages, the attack
requires generating massive bogus packets matching no rules
in switches. Different from it, our attack generates low-rate
data traffic to implicitly disrupt control traffic in the shared
links instead of directly generating massive control traffic.
Our attack can bypass the previous defenses [15], [30]–[32]
against packet_in flooding attacks since they detect attacks by
identifying and throttling malicious control traffic.
LDoS Attacks and Defenses in Traditional IP Net-
works. Kuzmanovic and Knightly [29] developed low-
rate TCP-targeted DoS attacks to disrupt TCP connections.
Zhang et al. [59] demonstrated the attack has severe impact
on the Border Gateway Protocol (BGP) by conducting real
experiments. Schuchard et al. [60] extended the attack and
designed the Coordinated Cross Plane Session Termination
attack (CXPST) that allows an attacker to disrupt the Internet
control plane by using only data traffic. Our attack differs
from the previous work in three aspects. First, our attack
focuses on disrupting the SDN control channel that shares
a limited number of links with data paths. Second, probing
techniques are required in the attack to identify target data
paths containing shared links, which is necessary to ensure
the effectiveness of the attack. Third, our attack in SDN has
more significant impacts on diversified network functionalities
including layer 2, 3 and 4 functions.

To defend against LDoS, some countermeasures have been
provided in traditional IP networks, such as randomizing
RTO [46] and complex signal analysis [61]–[66]. However,
randomizing RTO cannot fully mitigate the attack [59], and
none of the methods are shown to be sufficiently accurate and
scalable for deployment in real networks. Besides, they are
general defenses against LDoS in traditional IP networks and
are not designed to protect the SDN control channel. Defenses
against LDoS attacks on BGP was described in [60], such as
BGP Graceful Restart. However, it is not suitable to protect
the SDN control channel with “dumb” SDN switches.
Link Flooding Attacks and Defense in Traditional IP Net-
works. Studer and Perrig [67] and Kang et al. [68] introduced
link flooding attacks, which generate large-scale legitimate
low-speed flows to flood and congest network critical links.

They use traceroute to find critical links in traditional IP
networks. Our CrossPath attack also congests the critical links
that deliver control traffic and data traffic in SDN at the
same time. However, one major difference is that our Cross-
Path attack identifies the critical links with the unique SDN
reconnaissance technique. Moreover, the CrossPath attack can
incur various damages in the whole network by disrupting the
control channel due to the centralized control in SDN. Though
there exist some SDN defense systems [69]–[71] that detect
link flooding attacks, they cannot defend the CrossPath attack
that disrupts the control channel they depend on.

VIII. CONCLUSION

In this paper, we present a novel attack in SDN. It dis-
rupts the control channel by crafting data traffic to implicitly
interfere with control traffic in the shared links. We develop
the adversarial path reconnaissance to find a target data
path containing shared links for the attack. Both theoretic
analysis and experimental results show that our reconnaissance
works in real networks. We demonstrate that the attack can
significantly disrupt various network functionalities in SDN.
To defeat the attack, we design and prototype a defense system
named CrossGuard. Our experiments show it can effectively
defeat the attack while introducing small overhead.
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