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ABSTRACT

Modern speech recognition systems that are widely deployed today
still suffer from known gender and racial biases. In this work, we
demonstrate the potential to exploit the existing biases in these
systems to achieve a new attack goal. We consider the potential for
command disruption by an attacker that can be conducted in a man-
ner that allows for access and control of a victim’s voice assistant
device. We present a novel attack, BiasHacker, which crafts spe-
cialized chatter noise to exploit racial and gender biases in speech
recognition systems for the purposes of command disruption. Our
experimental results confirm both racial and gender bias that is still
present in the speech recognition systems of two modern smart
speaker devices. We also evaluated the effectiveness of three types
of chatter noise (American English (AE)-Male, Nigerian-Female,
Korean-Female) for disruption and demonstrate that the AE-Male
chatter is consistently more successful. Comparing the average
success rate of each chatter type, in scenarios where disruption
was achieved, we find that when targeting the Google Home mini
smart speaker, the AE-Male chatter noise increases average disrup-
tion success compared to the Nigerian-Female and Korean-Female
chatter noises by 112% and 121%, respectively. Also, when target-
ing the Amazon Echo Dot 2 the AE-Male chatter noise increases
average disruption success compared to the Nigerian-Female and
Korean-Female chatter noises by 42% and 69%, respectively.

CCS CONCEPTS

» Computing methodologies — Speech recognition; « Security
and privacy — Denial-of-service attacks.
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1 INTRODUCTION

Racial and gender biases in recognition systems are a known issue
even among current state-of-the-art technology and these biases
persist in speech recognition systems [11, 14, 18]. There are a num-
ber of reasons in the machine learning models that can cause these
outcomes and lead to low accuracies among certain speaker groups.
There can be feedback problems from an original biased model that
led to biases in a future model, the learning algorithm can be biased
because it is optimized for overall error rate, the ground truth may
not be labeled accurately for marginalized groups, the marginalized
group could be poorly represented in the data, or there could be
labeling issues. Until these are resolved, the harm caused by these
biases will continue and possibly lead to new vulnerabilities that
can affect a user. This paper explores one such vulnerability that
allows an attacker to exploit biases in speech recognition systems
for a specialized attack.

Voice assistant technology, such as smart speakers, is becoming
more commonplace in the household and new threats to the users
are emerging. The typical attack methodology for controlling a
smart home environment, up to this point, has been focused on
command injection attacks [2, 15, 19, 20]. Since smart speakers
do not perform speaker verification by default for all commands,
virtually anyone could issue a command to a smart speaker as
long as they can gain access. However, these injection attacks have
significant challenges such as sophisticated processes for creating
the obfuscated command and requiring that the command be un-
recognizable to human listeners while remaining understandable
to machines, often making them impractical in live attack situa-
tions [1]. Attacks that seek to disrupt a user’s command and keep
it from being recognized are less common. Most of the work that
looks to block a user’s command has an overall Denial of Service
(DoS) goal in which all functions of the virtual assistant are kept
from the user. In this work, we acknowledge the threat of disrupting
user commands as another form of DoS and realize the scenarios in
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which this poses a significant risk to the user. In particular, blocking
a user’s command to lock a door can give an attacker access to a
home, or blocking the “hangup” command on an active call between
smart speakers can leave the call connection open for an attacker
to eavesdrop.

Aside from the typical approach for blocking a user command
that utilizes some type of jamming signal, and in consideration of
the known racial and gender biases, we consider the possibility
of feeding specialized chatter noise (speech + music + noise) to
the speech recognition system that would be prioritized and recog-
nized in place of the legitimate user speech. For example, if noise
(possibly played through a TV or radio) containing speech from
an American English (AE) speaking male is played over a legiti-
mate voice command given by a female speaker with a non-AE
accent, the smart speaker may recognize the male speech content
and attempt to transcribe it without acknowledging the legitimate
command from the user. We chose a chatter type noise because we
found that dynamic noises such as speech and music are not filtered
by noise cancellation, while static noises are easily filtered. The
music and speech combination in the chatter noise work to make it
inconspicuous to a user. And since the noise sample will be short,
in order to mask just a particular word or command, it is likely
the noise will go unnoticed or be considered benign. In this light,
we present the BiasHacker attack which exploits known speaker
recognition biases in order to disrupt a user’s command (shown
in Figure 1). To our knowledge, we are the first academic study to
consider this broad attack vector for targeting speech recognition
systems. Notably, this methodology could apply to many domains.

Main Contributions and Results: We summarize our key contri-
butions and results below:

(1). Bias-based Disruption Noise: We generated specialized noise
that is designed to exploit known biases in speech recognition
in order to improve attack success. We evaluate three different
types of chatter noise that uses speech content from three different
types of speakers (AE-Male, Nigerian-Female, Korean-Female). For
the purposes of the attack, we suspect the AE-Male chatter noise
will perform best at disrupting user commands because it contains
speech that is known to be better represented and therefore pre-
ferred by speech recognition systems.

(2). Black-Box Analysis: We performed black-box experiments
using two live implementations of voice assistant technology in-
cluding a Google Home mini and an Amazon Echo Dot 2. The
experiments were conducted to evaluate the potential of the differ-
ent types of disruptive chatter noise. We confirm the presence of
racial bias where non-AE accented speech is more easily disrupted
compared to American English speech (found in the Google device
where only non-AE accented speech samples were successfully
disrupted). We also confirm the presence of gender bias where
female speech is more easily disrupted compared to male speech
(found in the Amazon device where only female speech samples
were successfully disrupted). Lastly, we demonstrate that a chatter
noise containing American English male speech is more effective
at command disruption than using speech from a Nigerian female
or Korean female which are less represented in speech recognition
systems (e.g., female speaker with a non-AE accent).
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2 THREAT MODEL

In our threat model, the attacker intends to block a user’s command
from being accepted by their voice assistant (VA) device. The at-
tacker targets users from under-represented groups because against
these users, disruption attacks can be exploited more effectively.
Using external noise injection, the attacker plays the disruption
noise in the same environment as the victim. This can be accom-
plished by multiple channels including, playing the noise from a
loudspeaker outside the space where the victim is located. Consider
a disruption noise that is disguised as a lawn-mower sound and
played outside a window. In this scenario the noise would be incon-
spicuous to a user, but could remain effective at hindering the VA
device from accepting the user’s command. Another possibility is
that the attacker can play their disruption noise through a speaker
device inside the room such as a television (noise disguised by a
commercial) or radio (noise disguised as music).

While most existing smart speaker attacks are aimed at injecting
a command [2, 15, 19, 20], blocking a command is a more practi-
cal threat because injection can be quite difficult. These attacks
typically involve some form of obfuscated voice command that
requires sophisticated techniques to generate. Additionally, it has
a requirement to be unrecognizable by a human listener so that it
may go undetected. With these hurdles, tackling a command injec-
tion attack may not be feasible. We can identify multiple scenarios
where blocking a command would also pose a significant threat.
This is especially the case since smart home environments are be-
coming more popular where multiple smart devices are connected
and controllable from a central VA device. Consider a user who is
about to go to bed and issues a command to lock their doors or turn
on security cameras. If these commands are blocked, an attacker
may be able to gain access through the unlocked doors and go
undetected by the cameras. One of the more threatening scenarios
for command blockage, which we use as a representative example
in this work, is an active call between devices that the user attempts
to hangup. If the attacker blocks the hangup command without
the user’s knowledge, the connection between devices will remain
open and active. In this scenario the attacker can compromise that
connection and use it to issue any command to the victim’s device,
or use the open connection to listen in on the victim.

3 METHODOLOGY
3.1 Experimental Setup

Our experiments were performed in a quiet room with no other
noises in the environment that could affect our results. As our
experiments are designed to evaluate command disruption using
unique samples of noise, we maintained a consistent setup with
two different audio sources (one for the normal command audio
and one for the noise audio) including a portable loudspeaker and
a separate loudspeaker system. In all experiments the loudspeakers
were connected to two different cell phones that stored the audio
files, and we placed each on opposite sides of the smart speaker
facing towards it. The loudspeakers were located 0.5 meters from
the smart speaker and a digital sound level meter was used to ensure
the normal command and noise were played at the correct volume
for each experiment (measured at the location of the smart speaker).
A lab member manually activated the normal command audio and
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Figure 1: Flow diagram depicting the steps in the BiasHacker attack. The attacker generates a disruptive chatter noise combining raw speech and music from a
preferred speaker type (i.e., American English male) with Gaussian White Noise. The chatter noise is then played when the legitimate user speaks their command
and the smart speaker attempts to interpret the chatter noise and ignore the legitimate command. If the legitimate user is from a community that is biased in a
speech recognition model, the preferred speaker in the chatter noise will be prioritized and the actual user command will be blocked.

noise sample so that the noise was played over the command portion
only. Using indicators from the smart speaker and checking online
voice command history logs, we recorded the number of times the
command was disrupted for each scenario.

3.2 Experimental Parameters

Sound Pressure Level (SPL): We test the noise audio at different
loudness levels to understand when it is possible to disrupt smart
speaker commands. In our experiments the normal commands are
played at 70 dB which is above the loudness level for normal human
conversation (40-60 dB), but is representative of the raised, presen-
tation style voice that most people use when addressing a smart
speaker device. For the disruptive noise we test loudness levels up
to the same level that the normal command is played. Specifically,
we test the disruptive noise at 50, 60 and 70 dB. Considering a
practical attack scenario, if the disruptive noise is louder than the
normal command spoken by the user, it would almost certainly be
detected and would raise alarm to the user that their command may
not have been understood.

Victim Speaker Type: We consider multiple speaker types in our
representation of potential victim speakers. We include both fe-
male and male speech samples encompassing five different accents
for English speech, elaborated in Section 3.4. One of the speaker
accents is American English, representing the main speaker type
that automatic speech recognition models perform the best for. The
other five speaker types encompass non-AE language accents that
affect the pronunciation of English words and can pose a challenge
for speech recognition systems.

Disruptive Noise Type: We generate three different types of dis-
ruptive chatter noise, elaborated in Section 3.5, to observe whether
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known speech recognition bias can be exploited for the purposes of
the BiasHacker attack. One of the noise types represents the gender
and accent of speech known to be preferred by smart speakers (AE,
male), while the other two types represent speakers that may be
less preferred (non-AE accent, female). Since American English
male data is often well represented, it is reasonable to assume that
a masking noise which contains this type of speech will perform
better at disrupting a user command (e.g., speech contained in the
chatter noise is preferred over the user’s own speech).

3.3 Equipment

The two loudspeaker devices used in our experiments were a Sony
SRS-XB2 Bluetooth portable speaker (for the normal command
audio) and a Logitech Z323 speaker system (for the noise audio).
We used a Rolls SLM305 digital sound level meter to ensure the
normal command and noise audio were played at the correct dB
level in each experiment. For our victim VA we used the Google
Home mini (wake word: “Hey Google”) and Amazon Echo Dot 2
(wake word: “Alexa”) smart speakers.

3.4 Speech Dataset

For our normal command audio samples of the “hangup” command
we used a Python script and the Google Text-to-Speech API to
generate audio samples in English for five different accents. For
plain American English we generated three female and three male
speaker samples (en-US-Wavenet-(A-F)). For the remaining four
accents we generated two female and two male speaker samples.
The non-AE accents used included Australian (en-AU-Wavenet-(A-
D)), German (de-DE-Wavenet-(A-D)), British (en-GB-Wavenet-(A-
D)), and Korean (ko-KR-Wavenet-(A-D)). Therefore, for each smart
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Table 1: Summary of command disruption results for each speaker accent and gender, chatter noise type, and both smart speakers. “/”: Successful command

disruption, “X”: No command disruption.

Amazon Echo Dot 2 Google Home mini
Speaker
Accent Chatter Type Chatter Type
Gender £ L
AE-Male Nigerian-Female Korean-Female AE-Male Nigerian-Female Korean-Female
. F v v v v v v
Australian
M X X X v X X
F v X X v v v
German
M X X X v v v
. F v X X v X X
British
M X X X v X X
F v X X v v v
Korean
M X X b 4 v v v
American F v v v X X X
English (AE)) M x % x x X %

speaker, we used a total set of 22 speaker samples. Before beginning
our official experiments, we confirmed that each of the normal
command audio samples were recognized 100% of the time by each
of the smart speakers, in the absence of noise.

3.5 Bias-based Disruption Noise Generation

We created three different versions of chatter noise (termed AE-
Male, Nigerian-Female, and Korean-Female) that are designed to
reveal the potential for exploiting speech recognition bias in our
attack. For each chatter noise we combined a sample of plain speech
(from TedTalks), music (from Youtube), and Gaussian White Noise.
These are the basic building blocks of a chatter noise. The plain
speech samples were all spoken in English with the Nigerian female
speaker having a Nigerian accent and the Korean female speaker
having a Korean accent. The music samples selected for each chatter
noise also included speech of the appropriate dialect/language. For
the AE-Male chatter noise we used a popular Country song, for the
Nigerian-Female chatter noise we used a pop song from a Nigerian
female pop singer, and for the Korean-Female chatter noise we used
a ballad sung by a Korean girl (in the Korean language). From each
of these chatter noises, we isolated three one second clips for a total
of nine different chatter noise samples.

4 RESULTS

In this section we present our results for the BiasHacker attack. We
conducted a large set of experiments that test the three versions of
the bias-based chatter noise that we created (AE-Male, Nigerian-
Female, Korean-Female). Using the normal command audio sample
from each TTS speaker (described in Section 3.4), we attempted 10
command disruption attempts for each version of disruption noise
(nine total). We recorded the percentage of attempts that the normal
command was successfully disrupted (e.g., incorrectly recognized or
not recognized). We ran experiments to test the disruptive chatter
noise samples at the 50, 60, and 70 dB SPL levels. We found that at
50 dB, none of the chatter noises were able to disrupt any of the
normal command audio samples. Conversely, at the 70 dB SPL level,
we found that all samples of the chatter noise were 100% successful
at disrupting all of the normal command audio samples (e.g., noise
was too loud to observe potential bias exploitation). Therefore,
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we present our findings for the 60 dB SPL level because there are
instances of both success and failure for command disruption. Table
1 shows the summarized results for attack success/failure for each
speaker type, chatter version, and smart speaker. We refer to our
project website (https://sites.google.com/view/bias-hacker) for a
full set of our results including accuracy tables, success summary,
and descriptions of the preliminary experiments and analysis that
were conducted.

4.1 Evidence of Racial Bias

The presence of racial bias (e.g., bias against non-AE accents) is very
apparent in the results for the Google Home mini. We observed up
to 100% command disruption success against the Australian, Ger-
man, and Korean speakers. And we observed up to 80% command
disruption success against the British speakers. On the other hand,
there were no successful disruption attempts against the American
English speakers (male or female) for any of the chatter noise types.
These results suggest that racial bias persists in the speech recog-
nition system used by Google. We did not observe the same racial
bias in the Amazon Echo Dot 2 results. In fact, we were surprised
to find that the American English speaker samples were the easiest
to disrupt compared to all the others.

4.2 Evidence of Gender Bias

In the results for the Amazon Echo Dot 2, we can see evidence
of gender bias in the speech recognition system used by Ama-
zon. Specifically, there was some disruption success against female
speakers of all accent types. We observed up to 60% disruption
success against female speakers with non-AE accents, and up to
100% disruption success against American English female speakers.
Interestingly, we did not observe any disruption success against
any of the male speakers with any of the chatter noise samples in
the attacks against the Amazon Echo Dot 2. Comparatively, we did
not observe the same gender bias in the Google Home mini results,
where both male and female samples were successfully disrupted.

4.3 Evidence of Bias Exploitation via Noise

Once we averaged the command disruption rates for each type of
chatter noise, it becomes clearer that there is a real potential for
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exploiting the known biases for the purposes of an attack. From
our results, we find a consistent trend concerning the effectiveness
of each chatter noise type to disrupt user commands. We find that
between all three types of chatter noise, the AE-Male chatter is con-
sistently the best performing for command disruption compared to
the Nigerian-Female and Korean-Female chatter. This observation
holds true in the results for both the Google Home mini and Ama-
zon Echo Dot 2. Between the Nigerian-Female and Korean-Female
chatter there is no clear pattern that suggests one type works bet-
ter than the other. However, the success rates for both types are
always less than the AE-Male chatter (in the instances where disrup-
tion success occurs). Based on the previous observations described
above, it seems that the AE-Male chatter noise exploits the racial
bias in the Google Home mini, where the other chatter noise sam-
ples use non-AE accented content. It also exploits the gender bias
in the Amazon Echo Dot 2, where the other chatter noise samples
use female content. In both cases, the AE-Male chatter is revealed
to be the most effective.

If we consider the average success rates in scenarios where dis-
ruption was achieved, we can see how much more effective the
AE-Male chatter noise is for the attack. Against the Google Home
mini, the average success rate of the AE-Male chatter is 53%. This
is a 112% increase from the average success rate for the Nigerian-
Female chatter (25%), and a 121% increase from the average success
rate for Korean-Female chatter (24%). Against the Amazon Echo
Dot 2, the average success rate of the AE-Male chatter is 27%. This
is a 42% increase from the average success rate for the Nigerian-
Female chatter (19%), and a 69% increase from the average success
rate for the Korean-Female chatter (16%). This strongly suggests
that the biases existing in modern speech recognition systems (e.g.,
preference to American English male speech) can be exploited for
command disruption attacks.

5 FURTHER INSIGHTS

We observed clear indications of both racial and gender biases in
the smart speakers that were used. We found that racial bias exists
in the speech recognition system used by Google, and gender bias
exists in the speech recognition system used by Amazon. We also
observed different behaviors from the smart speaker devices that
may lend to the presence of these biases. First, the Amazon device
seemed more strict about accepting user commands. If the audio
was perturbed in any way from the expected clear command, the
Amazon device would ignore it all together. The device would give
no response and would not illicit the user to try again. This suggests
that strong, clear commands in distinguishable tones are preferred.
This could be why male speech, which contains lower frequencies
and is less obscured by noise injection, are easier to recognize.
Next, compared to the Amazon device, the Google device seemed
to put a greater emphasis on accepting a command (even if it is
wrong) compared to not accepting one at all. We observed signifi-
cantly more instances of mis-recognition (identifying the wrong
command) with the Google Home mini which is still considered a
command disruption. For example, for the Korean male speakers,
the “Hangup” command was often mis-recognized as “King Kong”
or “Ping Golf” when the disruption noise was added. This resulted
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in a response about the King Kong movie, or nearby location sug-
gestions for playing golf. And for the German female speakers,
the “Hangup” command was often mis-recognized as “Hangover”
or “Array” resulting in a Wikipedia search and definitions for the
words. The Google device seems more apt to identify the speech and
maintain a dialogue with the user which could explain why foreign
accented speech is easier to disrupt. While the clarity of the English
is already lessened, adding in additional noise may cause the device
to more quickly mis-recognize the speech. So instead of diligently
processing the recorded audio, the device will simply accept the
first thing that it can recognize and then respond accordingly.

While the BiasHacker attack reveals a significant vulnerability in
the exploitation of speech recognition bias, there are a few known
limitations to this attack. First, this attack will certainly be less
effective, if at all, against speakers that are well represented in the
training of the speech recognition systems (i.e., American English
speaking men). Since their speech is already the most preferred in
these recognition systems, the approach to introduce speech that
is more favored does not apply. Another limitation to the attack is
the requirement of external noise sources to be near the victim’s
voice assistant. Without a medium to play the disruptive noise,
the attack cannot be executed. Finally, certain scenarios would not
be conducive to injecting a disruptive noise without detection. A
diligent user may wait for confirmation that their command was
accepted and could become immediately aware that their command
was disrupted if they pay attention.

In order to defend against the BiasHacker attack, we need a
solution to mitigate the effects of the inherent speaker biases in
speech recognition systems. Specifically, a solution is needed that
can ensure the prioritization of the legitimate user’s speech. One
solution to this would be a new form of speaker profile setting on
voice controllable devices that not only recognizes the trained user’s
voice profile, but will deny voice commands from any other speaker.
Another option could be an external device placed on the voice
assistant microphone that synthesizes the users voice in real time
to a known speaker type that is preferred (e.g., American English
male). Doing this would also exploit the speaker biases, but this
time it would be to benefit the user. Lastly, improvements in speaker
recognition and source localization on the devices can be used to
thwart this attack. If the device can recognize that the legitimate
command and the noise are coming from different locations, it will
become better at filtering all parts of the disruptive noise and accept
the actual voice command.

6 RELATED WORK

Command Injection: Previous work on disrupting smart speaker
and voice assistant commands have focused on command injection
attacks designed to trick the voice assistant into accepting malicious
commands. Various approaches have been taken, including audible
attacks using hidden voice commands [2], and inaudible attacks
using ultrasonic frequencies with both the air [20] and solid table
surface [19] as the transfer medium. Another work presented Light
Commands[15], a laser-based attack that encoded commands onto
a beam of light. These attacks focused on controlling the voice
assistant devices by injecting their own commands and did not
consider the potential to block user commands to achieve an attack
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goal. In fact, a recent work by Abdullah et al. [1] revealed that much
of these works are impractical in real-world setting because they
lack tranferability to multiple systems and they had not been tested
in over-the-air settings. Changing what a user says on the fly or
adding new speech that the user did not say, without them noticing,
would be extremely challenging in a live setting. Our work however
uses a short clip of noise to disrupt parts of a user command and
there are many applicable scenarios where this attack would be
practical and could go undetected.

Smart Speaker Jamming/DoS: Various forms of jamming have
been considered for use with smart speakers and voice assistants,
for both malicious and defensive purposes. In a work by Chan-
drasekaran et al. [3], the authors presented a privacy preserving
technique that used ultrasound jamming to prevent smart speakers
from eavesdropping. Similarly, Chang et al. [4] designed a reactive
jamming device that could disrupt speaker recognition of a wake
word. However, these defenses prevent any interaction with the
target system rendering further exploitation useless. Jamming tech-
niques have also been used to enact a DoS attack on the Siri and
Alexa voice assistants [13]. These attacks targeted the wake word
on devices, and did not explore disruption of critical commands.
These studies demonstrated that total jamming may be effective as
a brute defensive approach, but are not beneficial from an attack
perspective because of the limited control.

Machine Learning Bias: Many previous research works have
identified instances of bias that exist in different speech-related
systems [5, 8-10, 12]. Tatman and Kasten [16] identified dialect
and racial biases in Youtube’s automatic caption system that had
statistically different word error rate (WER) compared to American
English speakers who had the lowest average WER. Garnerin et
al. [6] examined four major speech corpora in French broadcasting
that were widely used by the speech community to train automatic
speech recognition systems. They identified gender bias based on
a lack of female representation in TV and radio who then became
under-represented in the data. Another work by these authors
found a lack of gender information in speech resources from the
Open Speech and Language Resource platform which impacted
transparency and fairness [7]. They realized that achieving gender
balance in the data requires other speech corpus characteristics. In
a work by Vanmassenhove et al. [17], the authors found that for
certain non-English languages encoding gender information in the
data improved the performance of neural machine translation.

7 CONCLUSION

In this work we presented the BiasHacker attack that utilizes spe-
cially crafted chatter noise and exploits existing speech recog-
nition biases to disrupt a user’s command. This attack can be
launched against any voice controllable device to disrupt critical
commands. We evaluated the effectiveness of three different types
of disruptive chatter noise against an array of different speaker
types (male/female, American English/non-AE accented). Our re-
sults first confirm the presence of racial bias in the Google Home
mini and gender bias in the Amazon Echo Dot 2. We find that AE-
Male chatter is more effective, compared to the other chatter noises,
for the Google Home mini and Amazon Echo Dot 2 by approxi-
mately 100% and 50%, respectively. Future work can look at more
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sophisticated noises and potentially expand the capabilities of the
attack by embedding commands to be injected.
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